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ABSTRACT

Immunotherapy has been a remarkable clinical advancement in cancer treatment, but only a few patients benefit
from it. Metabolic reprogramming is tightly associated with immunotherapy efficacy and clinical outcomes.
However, comprehensively analyzing their relationship is still lacking in lung adenocarcinoma (LUAD). Herein, we
evaluated 84 metabolic pathways in TCGA-LUAD by ssGSEA. A matrix of metabolic pathway pairs was generated
and a metabolic pathway-pair score (MPPS) model was established by univariable, LASSO, multivariable Cox
regression analyses. The differences of metabolic reprogramming, tumor microenvironment (TME), tumor
mutation burden and drug sensitivity in different MPPS groups were further explored. WGCNA and 117 machine
learning algorithms were performed to identify MPPS-related genes. Single-cell RNA sequencing and in vitro
experiments were used to explore the role of CLQTNF6 on TME. The results showed MPPS model accurately
predicted prognosis and immunotherapy efficacy of LUAD patients regardless of sequencing platforms. High-MPPS
group had worse prognosis, immunotherapy efficacy and lower immune cells infiltration, immune-related genes
expression and cancer-immunity cycle scores than low-MPPS group. Seven MPPS-related genes were identified, of
which C1QTNF6 was mainly expressed in fibroblasts. High C1QTNF6 expression in fibroblasts was associated with
more infiltration of M2 macrophage, Treg cells and less infiltration of NK cells, memory CD8+ T cells. In vitro
experiments validated silencing CLQTNF6 in fibroblasts could inhibit M2 macrophage polarization and migration.
The study depicted the metabolic landscape of LUAD and constructed a MPPS model to accurately predict
prognosis and immunotherapy efficacy. CLQTNF6 was a promising target to regulate M2 macrophage polarization
and migration.

INTRODUCTION the most common histological subtype, accounting for

40% lung cancer cases [2]. Although great progress has
Lung cancer remains a leading cause of cancer-related been made in LUAD treatment, the five-year survival
death worldwide [1]. Lung adenocarcinoma (LUAD) is rate of patients remains dismal [3]. Immunotherapy has
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led to striking clinical improvements while not all
cancer patients can benefit from immunotherapy due
to heterogeneity and adaptive evolution of tumor. Only
about one third of patients acquire durable alleviation
from it [4]. To give patients more personalized medicine,
it is essential to reveal the mechanism underlying distinct
immunotherapy responses and develop signatures to
predict prognosis and immunotherapy efficacy.

Recent studies revealed that oncogenic transformation
induces a well-characterized metabolic phenotype in
tumor cells, which in turn affects tumor microenviron-
ment (TME) [5]. As a new hallmark of malignant
tumors, metabolic reprogramming improves malignant
cells adaptation to meet bioenergetic, biosynthetic,
redox balance demands and immune evasion, thus
providing a selective advantage during tumorigenesis
[5]. Aerobic glycolysis (the Warburg effect) is a special
metabolic pattern that tumor cells consume glucose and
produces lactate even when oxygen is sufficient.
Aerobic glycolysis not only provides enough ATP but
also numerous precursor metabolites for lipids, amino
acids, and nucleotides biosynthesis to support rapid
proliferation [6]. Dysregulated lipid metabolism is
another prominent metabolic alteration in cancer [7].
Under energy stressful conditions, tumor cells can
harness lipid hydrolyzation to generate ATP and second
messengers including diacylglycerol, arachidonic acid,
lysophosphatidic acid, and phosphatidic acid to activate
oncogenic signaling pathways [7-9]. Other metabolic
pathways such as amino acids metabolism, one carbon
metabolism, purine and pyrimidine metabolism, are
also dysregulated in tumor cells due to mutation of
oncogenes, tumor suppressor genes or metabolic
enzymes [10, 11]. Increasing evidence has suggested
that tumor metabolic heterogeneity is greatly associated
with TME status and immunotherapy [12-14]. Several
studies have suggested that glycolysis of tumor cells
restricts glucose utility of tumor-infiltrating lymphocytes,
thereby inducing T cells exhaustion and immune escape
[15]. Glutamine deprivation inhibits the transformation
of CD4* T cells to inflammatory subtypes, production
and secretion of pro-inflammatory cytokines (IL-1,
IL-6, and TNF) by macrophages, and promotes the
apoptosis of immune cells [16-18]. Large amount of
lactic acid produced by tumor cells increases the acidity
of TME and impairs the anti-tumor function of T cells
and natural killer (NK) cells [19, 20]. Consequently,
comprehensively depicting tumor metabolic landscape is
promising to predict the prognosis and immunotherapy
response of cancer patients and develop new treatment
strategies.

Based on some metabolic features, many metabolic
signature-based prognostic models have been established
and acquired good predicting performance [14, 21, 22].

However, most models are based on a single metabolic
pathway, lacking comprehensive exploration for tumor
metabolism. Moreover, most models are constructed
by focusing on exact gene expression and commonly
unapplicable in another cohort sequenced by different
platforms. To overcome the above shortcomings, we
comprehensively assessed 84 metabolic pathways from
12 kinds of metabolism in LUAD by single sample
gene set enrichment analysis (sSGSEA), developed
and validated a metabolic pathway-pair score (MPPS)
model to accurately predict the prognosis and
immunotherapy efficacy of LUAD patients regardless
of sequencing platforms. The model performed better
than 51 published signatures of LUAD and was
applicable to pan-cancers. The distinct metabolic
features, TME between high- and low-MPPS groups
were depicted. Weighted gene co-expression network
analysis (WGCNA) and 117 machine learning
algorithm combinations were performed and identified
7 MPPS-related genes, of which CLQTNF6 was
mainly expressed in fibroblast. CIQTNF6 expression
in fibroblast is positively related to fibroblasts,
M2 macrophages and Treg cells infiltration but
negatively related to memory CD8* T cells and NK
cells infiltration. Silencing CLQTNF6 expression in
fibroblast impaired M2 macrophage polarization and
migration in vitro assays. Meanwhile, Mendelian
randomization (MR) also indicated that CLQTNF6
was cause of lung cancer onset. The MPPS model
overcomes the obstacle of sequencing data from
different platforms and is promising to guide LUAD
patients’ selection for immunotherapy.

RESULTS
Heterogenous metabolic profiles of LUAD

The overall design of our study was shown in the
flow chart (Figure 1). To investigate the metabolic
reprogramming in LUAD, we extracted 84 metabolic
pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. The 84 meta-
bolic pathways contained 12 kinds of metabolism,
including 14 carbohydrate metabolic pathways, 13
lipid metabolic pathways, 12 cofactors and vitamins
metabolic pathway, 13 amino acid metabolic pathways,
14 glycan biosynthesis and metabolic pathways, 2
biosynthesis pathways of other secondary metabolites,
3 energy metabolic pathways, 1 genetic information
processing pathway, 6 other amino acids metabolic
pathways, 1 terpenoids and polyketides metabolic
pathway, 2 nucleotide metabolic pathway and 3
xenobiotics biodegradation and metabolic pathway.
We first scored each pathway in all samples using
sSGSEA and characterized the metabolic heterogeneity
between LUAD and normal tissues (Figure 2A). It was
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demonstrated that a total of 68 (80.95%) metabolic
pathways were dramatically dysregulated (23 up-
regulated pathways and 45 downregulated pathways
in LUAD compared to normal lung tissues) (P < 0.05).
The dysfunctional pathways encompassed the three
main kinds of metabolism including carbohydrate,
lipid and amino acids metabolism. Next, to investigate

the intratumor heterogeneity of metabolism, we
classified TCGA-LUAD samples into two clusters
based on 84 metabolic pathways scores by unsupervised
consensus clustering (Figure 2B). PCA and metabolic
heatmap displayed that the two clusters had obviously
heterogenous metabolic characteristics (Figure 2C, 2D).
The cluster A seemed to be a “cold” metabolic subtype
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Figure 2. The metabolic heterogeneity of lung adenocarcinoma (LUAD). (A) The differences of 84 metabolic pathways scores
between LUAD and normal tissues in TCGA. (B) An unsupervised consensus clustering according to 84 metabolic pathways scores in TCGA-
LUAD samples. (C) Principal Component Analysis of cluster A and B of TCGA-LUAD. (D) The differences of 84 metabolic pathways scores
between cluster A and cluster B. Pathological stage, sex, age, and survival status used as patients’ annotation. (E) The differences of 84
metabolic pathways scores among different cells by single-cell RNA sequencing (scRNA-seq) data. *P < 0.05, **P < 0.01, ***P < 0.001.
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but the cluster B seemed to a “hot” metabolic subtype.
To further distinguish the metabolic variation in various
TME cells, we compared metabolism scores among
endothelial cells, fibroblast, malignant cells and pan-
immune cells by scRNA-seq data. The results suggested
that malignant cells had a significantly higher metabolic
level than the other three cells (Figure 2E). The above
results indicated that metabolic heterogeneity was
common in LUAD and might play a crucial role in the
initiation and progression of LUAD.

Development of a prognostic model based on MPPS
and exploration of its clinical relevance

Different sequencing platforms commonly possess
different sequencing depth. Consequently, sequencing
data from different sequencing platforms had different
numbers of genes and significantly different expression
levels. When gene expression data from different
platforms were utilized, data standardization and
scaling and intersecting gene from different platforms
are needed, which will cause loss of some genetic
information. The metabolic pathway pair model can
reduce the effects of some gene deletion on prediction
and eliminate the shortcomings of data standardization
and scaling in gene expression data processing and
effectively avoid the interference caused by the
sequencing platform. To develop a prognostic model
based on MPPS, we firstly paired the 84 pathways and
525 pathway pairs were obtained after removing those
pathway pairs that proportion of 0 or 1 was more than
80% or less than 20%. Subsequently, we conducted
univariable Cox regression analysis on these pathway
pairs and selected 106 meaningful metabolic pathway
pairs for Least absolute shrinkage and selection operator
(LASSO) regression analysis (Figure 3A). LASSO
regression analysis yielded 33 metabolic pathway pairs
with nonzero LASSO coefficients according to the
optimal A value (Figure 3B, 3C). Multivariable Cox
regression analysis was further performed to identify
prognostic metabolic pathway pairs based on Akaike
information criterion value and 19 metabolic pathway
pairs were finally obtained (Figure 3D). MPPS was
calculated using value of 19 metabolic pathway pairs
weighted by their multivariable Cox regression co-
efficients and stratified LUAD patients into high- and
low-MPPS groups according to the optimal cut-off
point determined by the “survminer” package. PCA
analysis showed that LUAD patients could be divided
into distinctive groups according to MPPS (Figure
3E). The heatmap showed obvious discrepancy of 19
metabolic pathway pairs between the high- and low-
MPPS group (Supplementary Figure 1A). Patients with
high-MPPS scores had significantly shortened overall
survival (OS) and progression-free survival (PFS) in the
TCGA-LUAD training cohort and six GEO validation

cohorts (all P < 0.05). The GEO merge cohort
integrating the six GEO cohorts also showed the same
trend (P < 0.05) (Figure 3F). The risk plot of MPPS
indicated that as MPPS increased, OS time decreased
while mortality rose (Supplementary Figure 1B).

To determine the correlation of MPPS and clinical
traits, we compared the differences in MPPS among
different clinical subgroups based on age, sex, survival
status and pathological stage. Patients in alive, stage I,
stage T1 and stage NO subgroups had lower MPPS
compared to the other subgroups (P < 0.05), while
there was no significant difference of MPPS in age,
sex and M stage subgroups (Supplementary Figure 2A—
2G). The Sankey diagram illustrated the distribution
and correspondence of LUAD patients in MPPS
groups, survival status, age, sex, and pathological stage
(Supplementary Figure 2H). In addition, MPPS also
showed robust performance on predicting prognosis in
different clinical subgroups, including age, sex, TNM
stage (P < 0.05) (Supplementary Figure 21-2P).

Evaluation of the MPPS model

To investigate the accuracy of the MPPS model,
ROC analysis was conducted and showed good
performance in both training cohort and validation
cohort (1-, 3-, 5-year AUC: 0.755, 0.781, 0.785 in
OS of TCGA-LUAD; 0.664, 0.689, 0.671 in PFS of
TCGA-LUAD; 0.599, 0.658, 0.695 in OS of GSE3141;
0.832, 0.705, 0.682 in OS of GSE13213; 0.699, 0.641,
0.633 in OS of GSE30219; 0.789, 0.661, 0.678 in OS of
GSE31210; 0.671, 0.624, 0.693 in OS of GSE50081;
0.641, 0.663, 0.684 in OS of GSE72094; 0.672,
0.633, 0.66 in OS of GEO merge cohort) (Figure 4A).
With the developments in next-generation sequencing,
a considerable number of prognostic models were
developed. To compare the performance of MPSS with
other signatures, we retrieved 51 published signatures of
LUAD including 15 IncRNA signatures and 36 mRNA
signatures. These signatures encompassed various
biological processes, such as autophagy, immune
response, ferroptosis, stemness, epithelial-mesenchymal
transition (EMT), hypoxia, ageing, methylation et al.
The results suggested that MPSS had highest 1-, 3-, 5-
year AUC of TCGA-LUAD cohort (Figure 4B). MPPS
also displayed higher C-index in TCGA-LUAD cohort
than almost all models (Figure 4C).

To further investigate the performance of MPPS on
predicting prognosis of other tumors, we performed
survival analyses of patients in the high- and low-MPPS
groups involving 32 types of tumors in TCGA other
than LUAD. Patients in the high-MPPS group had
significantly worse OS than low-MPPS group in all
32 tumors (P < 0.05) (Figure 5A). MPPS also displayed
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Figure 3. Construction of a metabolic pathway-pair score (MPPS)-based prognostic model. (A) The univariable Cox regression
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Kaplan-Meier analysis of the high- and low-risk groups in TCGA-LUAD cohort and GEO validation cohorts. OS: overall survival; PFS:
progression-free survival. The survival analysis was tested by log-rank test.
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high 1-, 3-, 5-year AUC in predicting prognosis of 32
tumors (Figure 5B-5D).

Pathway enrichment and function annotation of the
high- and low-MPPS groups

To explore the underlying mechanism of survival
variation in different MPPS groups, we first performed
pathway enrichment and function annotation of the
high- and low-MPPS groups by KEGG and Gene
Ontology (GO) analyses. The high-MPPS group had
higher metabolic levels in pentose phosphate path-
way, pyrimidine, cysteine and methionine metabolism.
Multiple proliferation-related pathways including DNA
replication, cell cycle, mismatch repair were enriched
in the high-MPPS group (P < 0.05). On the contrary,
immune response pathways such as B cell receptor
signaling pathway, JAK/STAT signaling pathway, T

cell receptor signaling pathway and cytokine-cytokine
receptor interaction were more enriched in the low-
MPPS group (Figure 6A). GO function annotation
also demonstrated that DNA replication and translation
were more associated with high MPPS, and immune
cell development, maturation, activation and response
were more related to low MPPS (P < 0.05) (Figure 6B).
Additionally, multiple oncogenic pathways including
hypoxia, epithelial-mesenchymal transition, DNA
damage response, glycolysis, unfolded protein response
and mTOC1 signaling et al. were significantly enriched
in the high-MPPS group (Supplementary Figure 3A).
The above results all indicated that LUAD with high
MPPS possessed higher malignancy.

To characterize metabolic reprogramming involved in
MPPS, we firstly analyzed the variation of 31 pathways
in MPPS model between LUAD and normal lung

A

ACC BLCA BRCA CESC GBM CHOL COAD HNSC
g \ ‘\\—a_ 0 \\\_ \
: \x f \ (NG s 11N
RS ! o v — \\\: ﬁ ey
KICH DLBC ESCA LUSC LAML KIRP KIRC PAAD
B — —— S N —
o \"'\ i \-ﬂ'». { \\ . N
S e % L ey L \
LGG LIHC READ PCPG ov MESO PRAD SKCM
N F e [ N G| ~ [\
{7 . L Y&
THYM STAD THCA TGCT SARC UCEC UvMm ucs
————————— o = SR A ™ Ny —
W= ] N i - - \
e i 2 i i o s
o B c oo
= ] « € ST H
i ' § « ¥ o #
Py o % 4 % ¥ v. & K
ER S Seb, & &
» ¢ . gy “
1 o “ 4B &~ 2 e
e o7 8 o2 8
o Type smo i B« coL Typ R s oL Type
e == .3 por I -8 f- I=
v S e o o8 el
3 -
. : < . o - %, .
s ® // o 4 3

Figure 5. Evaluation of MPPS model in pan-cancer. (A) The Kaplan-Meier analysis of the high- and low-risk groups across 32 tumors in
TCGA database except LUAD. The survival analysis was tested by log-rank test. (B-D) The 1-, 3-, 5-year AUC of MPPS model across 32 tumors

in TCGA database except LUAD.

WWWw.aging-us.com

8779

AGING



B cell receptor signaling pathway

Cell adhesion molecules (CAMs)

Cell cycle

Cysteine and Methionine metabolism
Cytokine-cytokine receptor interaction
DNA replication

FC epsilon signaling pathway
Intestinal immune network for IgA reproduction
JAK STAT signaling pathway
Mismatch repair

Pentose phosphate pathway
Pyrimidine metabolism

T cell receptor signaling pathway

o
»

Enrichment Score
=3
o

© e ® 0 06 0 0 0 0 e 0 & O

e iy 1 ' o ' NCTLIRL Wi

T MR ' " W
fer b i ] | R

High exp! i Low

Type E3 High E3 Low (Ghyco/GlucoOne C pool by folate = @ (5] @ )
oo @) ) @) )
- e ey e @ Gaia MetaGangio B - (@) o @ O
E% . _% ; FAEION-Glycan Bl - ! + ° @
o751 Ly &k s '% 7% é% T j% E%’ ABowMIN-gemBo - . . ) vae
=i T b . .
' iy RIS orrse- @ @ @ © Mo
§ e, Sl oA $ Qunone BoSe-comlea - @ ° ° ° 050
§os0 ' F f b . Cotvoavamen - @ @) o (@] I 025
3 ] . [ Pyrim Meta/Sphin Meta = ) O @ O 000
é . # * Cysmatmemmgoso - (O o ) @ ok
025 M vaeuse Dopamec-raso- (@) @ @ @ O m
b= . Tyr Meta/Buta Meta . . . ° O -
3 socomtiaanaas- O O o @
os0
0.00 !t 0~ Meta/Sta Sur Meta - ® (@) ® ) 8 o
ST FIITPIIIELEFEFIITTLIIILLIEES R d O © =
S g S S S T s T T8 Tsssess smsamainn: @) e @) 0
; § ; <
Ogcg* Q§§§‘745 FoFTESEESSESLEAFF f{é:’q‘e&@ &4 P o ° o
3 < % $
S F & v}oﬁo Qc?; §8 TEET S mmommoanenin- O @ @ @
§& & ———9 94
& & 5 &
“:‘ Jf y"’p &

Figure 6. Pathway enrichment and function annotation of the high- and low-risk groups. (A) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses between the high- and low-risk groups. (B) Gene Ontology (GO) between the high- and low-risk groups.
(C) The differences of 31 metabolic pathways scores between the high- and low-risk groups. (D) The bubble diagram was drawn by the
average of 19 metabolic pathway pairs in pan-immune cells, endothelial cells, fibroblasts, and malignant cells. (E) The differences of genes in
19 metabolic pathway pairs between the high- and low-risk groups. Pathological stage, sex, age, and survival status used as patients’
annotation. (F) The protein-protein interaction network by STRING website and the software Cytoscape v3.9.1. *P < 0.05, **P < 0.01, ¥***P <
0.001.
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tissues. A total of 26 pathways were dysregulated in
LUAD, in which 7 metabolic pathways were up-
regulated and 19 metabolic pathways were down-
regulated (Supplementary Figure 3B). Further analyses
revealed that 22 pathways were significantly variant
between the high- and low-MPPS groups. The high-
MPPS group had higher metabolic scores in the galactose
metabolism, fatty acid (FA) elongation, pyrimidine
metabolism, cysteine and methionine metabolism, one
carbon pool by folate and aminoacyl-tRNA biosynthesis
et al. indicating that biomass synthesis and proliferation
were more active in the high-MPPS group. The low-
MPPS group had higher metabolic scores in the caffeine
metabolism, valine, leucine and isoleucine degradation,
selenocompound metabolism and arachidonic acid
metabolism, etc. (Figure 6C). The correlation of MPPS
and 31 metabolic pathways was shown in Supplementary
Figure 3C. By calculating the averages of 19 metabolic
pathways pairs in each kind of TME cell, we found the
lung malignant cells had higher level of cysteine and
methionine metabolism/ganglio series biosynthesis than
the immune cells, endothelial cells and fibroblasts
(Figure 6D). The further differential expression analysis
displayed that there existed obviously differential
expression in 31 metabolic pathway genes between the
high- and low-MPPS groups and the protein-protein
interaction analysis demonstrated that the 76 DEGs had
complex regulatory network (Figure 6E, 6F).

Evaluation of TME and immunotherapeutic benefits
in the high- and low-MPPS groups

Considering many immune-related pathways were
enriched in the low-MPPS group, we evaluated
the TME components between the high- and low-
MPPS groups by estimate algorithm. The low-MPPS
group had higher stromal score, immune score and
ESTIMATE score than high-MPPS group (Figure 7A).
The GSVA enrichment analysis was performed to
evaluate immune filtrating cells and immunologic
functions. The results showed that low-MPPS group had
higher immune cells infiltration and immunologic
functions activation in total including the infiltration
of activated B cells, activated CD8+ T cells, activated
dendritic cells, eosinophil and macrophage and the
immune checkpoint, HLA, T cell co-inhibition or
stimulation, type Il IFN response (Figure 7B, 7C). A
total of 29 immune checkpoint genes were differentially
expressed between the high- and low-MPPS groups,
in which 27 immune checkpoint genes, accounting
for 93.1% were highly expressed in the low-MPPS
group (Figure 7D). In addition, a total of 16 (66.7%)
HLA genes expression were altered and they were all
upregulated in the low-MPPS group (Figure 7E). The
cancer—immunity cycle elucidates antitumor immune
responses and offers an opportunity to understand the

interactions between cancer and its immune system
[23]. The low-MPPS group had higher cancer—
immunity cycle scores in cancer antigens presentation,
priming and activation, CD4* T cell, dendritic cell,
B cell, Th17 cell recruiting, and immune cells tumor
infiltration but lower scores in cancer antigens release
and eosinophil recruiting than the high-MPPS group
(Figure 7F). To further investigate the correlation
between MPPS and immunotherapy efficacy, we
calculated the TIDE score. The results suggested that
the low-MPPS group had higher T cell dysfunction
score than the high-MPPS group (Supplementary
Figure 4A). LUAD with high-MPPS score was
more inclined to immune-desert or excluded phenotype
and LUAD with low-MPPS score was more inclined
to immune-inflamed phenotype (Supplementary Figure
4B). Higher immunophenoscore (IPS) was also
exhibited by patients in the low-MPPS group compared
with those in the high-MPPS group (Supplementary
Figure 4C). The above results indicated that patients
in the low-MPPS group may be more sensitive to
immunotherapy.

To further validate the speculation, seven independent
immunotherapy cohorts in the published literatures
were used to validate immunotherapy efficacy and
prognosis including advanced urothelial cancer treated
with atezolizumab, an anti-PD-L1 antibody, melanoma
treated with anti-CTLA4 and anti-PD-1 therapy,
metastatic melanoma treated with anti-CTLA4 therapy,
non-small cell lung cancer (NSCLC) treated with
nivolumab or pembrolizumab, an anti-PD-1 anti-
body, NSCLC treated with anti-PD-1/PD-L1 antibody,
melanoma treated with ACT, Melanoma treated with
anti-PD-1 antibody. The results showed that the low-
MPPS group had significant survival advantage and
higher immune response rate compared to the high-
MPPS group in all validation cohorts (Figure 8A-8N).
The response to anti-PD-1 and anti-CTLA4 therapy was
calculated using the TIDE website based on TCGA
cohort. Patients in the low-MPPS group were more
likely to be responders and benefit from immunotherapy
(Figure 80, 8P).

TMB and drug sensitivity analysis

To explore the correlation of MPPS and tumor
mutation, Spearman correlation analysis was performed
and significant positive correlation was found between
MPPS and TMB (R=0.17, P=0.00013) (Figure 9A).
LUAD patients in the high-MPPS group had higher
TMB than those in the low-MPPS group (P=0.0038)
(Figure 9B). By Kaplan-Meier analysis, we found
LUAD npatients with low-MPPS score and high TMB
had the best survival advantages and LUAD patients
with high-MPPS score and low TMB had the worst
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prognosis (P<0.001) (Figure 9C). The distribution of
somatic mutations in the high- and low-MPPS groups
was investigated in the TCGA-LUAD cohort. Patients
in the high-MPPS group displayed significantly higher
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frequencies of somatic mutations compared with those
in low-MPPS group (93.33% vs 85.81%), especially in
TP53 (52% vs 39%), TTN (51% vs 35%), MUC16
(43% vs 36%), RYR2 (37% vs 32%), CSMD3 (41% vs

Risk High F3 Low

100] =+ # sk g 4 s g e s o s sk s opg wm g opg 4 A+ g

(=]
~
o
11
es—[}—
-
S
——
|
1
-
L T
- T}+—
.e -“.—m— *
.
_—
g .
I |
-
-4
-
I
-—{1—

Immune infiltration
< o £

{4}

S

1+

.
I
-
-

o
Y
@
-
.

0.001 °
N G A A Y Y O
PO FFIIIF RIS FEFFF I
Fg e SEES e T I IS TS L L LS
LI EFFCEFE F TF S e F S
& @ Sl & R . ¥ Nt A
TEEFL @@ a@é‘ & ’5@‘0 ‘g}‘) & _;\.O‘b & & Qo\ q‘;‘,
¥ S (\'§bb‘ © 46“ & PR
TS N &
v
00 ) <
Risk ES Low B3 High
.+
.
H
6 . .
. e .

Gene expression
B

group High £ Low

Gene expression
(=]
e
—
—
e

20 Stepd: MDSC

23 StepT: Killing of cancer cells
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29%) and LRP1B (34% vs 25%). Moreover, missense
mutation and multi-hit were the main mutation type
in both high- and low-MPPS groups (Figure 9D,
9E). To further explore the clinical utility of MPPS in
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precision medicine, we assessed the sensitivity of 137
chemotherapeutic or targeted therapy drugs in different
MPPS groups (Figure 9F). The results showed that the
patients in the high-MPPS groups had lower IC50
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Figure 8. Prediction of immunotherapy by MPPS model. Survival analysis (A) and response to anti-PD-L1 therapy (B) between the
high- and low-risk groups in advanced urothelial cancer (IMvigor210 cohort). Survival analysis (C) and response to anti-CTLA4 and anti-PD1
therapy (D) between the high- and low-risk groups in melanoma (GSE91061). Survival analysis (E) and response to anti-CTLA4 therapy
(F) between the high- and low-risk groups in metastatic melanoma. Survival analysis (G) and response to anti-PD1 therapy (H) between the
high- and low-risk groups in NSCLC (GSE126044). Survival analysis (1) and response to anti-PD-1/PD-L1 therapy (J) between the high- and low-
risk groups in NSCLC (GSE135222). Survival analysis (K) and response to adoptive T cell therapy (L) between the high- and low-risk groups in
melanoma. Survival analysis (M) and response to anti-PD-1 therapy (N) between the high- and low-risk groups in melanoma (GSE78220).
(O) Difference of responder between low- and high-risk group of LUAD in TCGA. (P) Difference of benefits between low- and high-risk group

of LUAD in TCGA.
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Figure 9. Tumor mutation burden (TMB) and drug sensitivity analysis. (A) The correlation of MPPS and TMB in TCGA-LUAD samples.
(B) The differences of TMB between the high- and low-risk groups. (C) The Kaplan—Meier curves show OS differences stratified by TMB and
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values of 67 drugs, indicating sensitivity. Alternatively,
the patients in the low-MPPS group were sensitive to 26
drugs. Together, the results may provide a standard of
reference for treatment stratification of patients with
LUAD.

Establishment of a MPPS-based nomogram

To construct a MPPS-based nomogram for convenient
use, we analyzed the prognostic value of MPPS,
age, sex, pathological stage and treatment type by
univariable and multivariable Cox regression analyses
(Table 1). In the univariable Cox regression analysis,
age (HR (95%Cl): 1.43 (1.056-1.936), P=0.021), stage
(HR (95%Cl): stage Il 2.302 (1.590-3.332), P<0.001;
stage 11/1V 3.295 (2.309-4.702), P<0.001) and MPPS
(HR (95%CIl): 1.042 (1.036-1.049), P<0.001) were
significantly related to LUAD prognosis. After adjusted
by multivariable Cox regression analysis, MPPS, age
and pathological stage were identified as independent
prognostic factors and used to construct a prognostic
nomogram (HR (95%Cl): age 1.45 (1.065-1.975), P =
0.018; stage Il 2.371 (1.637-3.434), P < 0.001; stage
/v 2,537 (1.756-3.667), P < 0.001; MPPS 1.039
(1.032-1.046), P < 0.001). The prognostic homogram
made quantitative predictions of the 1-, 3-, and 5-year
OS probabilities in patients with LUAD (Figure 10A).
The calibration curves exhibited a high consistency
between the predicted and actual 1-, 3-, and 5-year
OS (Figure 10B). The ROC curves displayed the
nomogram had higher AUC values than the single
predictor such as MPPS, age, sex, stage, treatment
type (1-, 3-, 5-year AUC: 0.793, 0.821, 0.82) (Figure
10C-10E).

Identification of a MPPS-related gene signature by
WGCNA and machine learning

To identify MPPS-related modules, WGCNA analysis
was performed and 21 modules were identified.
231 genes with gene significance (GS)>0.25, module
membership (MM)>0.2 and P < 0.05 were considered
as hub MPPS-related genes. Therefore, the hub genes in
cyan, tan and turquoise modules met the criterion
(Figure 11A). Intersecting with GEO genes from 6 GEO
cohorts and DEGs between TCGA-LUAD and normal
tissues, 104 hub MPPS-related genes were identified
for subsequent analysis (Figure 11B). Based on the
expression profiles of 104 hub MPPS-related genes,
univariable Cox analysis identified 82 prognostic genes.
These 82 genes were subjected to our machine learning-
based integrative procedure to develop a consensus
MPPS-related gene signature. In the TCGA-LUAD
dataset, we fitted 117 kinds of prediction models via the
LOOCYV framework and further calculated the C-index
of each model across 6 GEO validation datasets (Figure

11C). Finally, the 7-gene signature composed of ECT2,
ANLN, SLC2Al1, LDHA, GAPDH, CI1QTNF6 and
KRT8 identified by a combination of Lasso regression
and survival-SVM had the highest mean C-index in the
6 validation cohorts (Figure 11D, 11E). A gene-based
risk score for each patient was calculated by the
survival-SVM algorithm and divided patients into the
high- and low-risk group according to the optimal cut-
off value determined by the “survminer” package. To
validate the prognostic value of the gene signature, we
performed Kaplan-Meier analysis. The patients in the
high-risk group had significantly dismal OS and PFS
compared to the low-risk group in the TCGA-LUAD
training cohort and six GEO validation cohorts (all P <
0.05) (Figure 11F). The GEO merge cohort also showed
the same trend (P < 0.05). In addition, ROC analysis
measured the discrimination of the gene signature, with
1-, 3-, 5-year AUCs of 0.697, 0.704, 0.626 in OS of
TCGA-LUAD; 0.643, 0.615, 0.556 in PFS of TCGA-
LUAD:; 0.763, 0.771, 0.686 in OS of GSE3141; 0.861,
0.676, 0.692 in OS of GSE13213; 0.673, 0.752, 0.777
in OS of GSE30219; 0.777, 0.727, 0.757 in OS of
GSE31210; 0.758, 0.718, 0.698 in OS of GSE50081;
0.684, 0.643, 0.662 in OS of GSE72094; 0.716, 0.689,
0.699 in OS of GEO merge cohort (Supplementary
Figure 5A). To further verify the predicting performance
of the gene signature in the clinical practice, we next
evaluated the mRNA expression of the 7 genes in a
clinical cohort of 42 LUAD patients by gqRT-PCR. The
Kaplan-Meier analysis showed the low-risk group had
better prognosis than the high-risk group (Supplementary
Figure 5B). The model had high accuracy in predicting
OS with 1-, 3-, 5-year AUCs of 0.763, 0.725, 0.762
in the clinical practice (Supplementary Figure 5C).
Together, the MPPS-related gene signature had robust
performance in prognostic prediction of LUAD.

Expression, function, prognosis analyses of MPPS-
related gene signature

To investigate the correlation of MPPS and the
gene risk score, Spearman correlation analysis was
performed and significantly positive correlation was
observed with R=0.6 and P < 2.2e-16 (Figure 12A).
Next, the 7 genes all exhibited obviously higher
expression in LUAD than normal lung tissue (Figure
12B). Compared to the low-MPPS group, the high-
MPPS group had significantly upregulated expression
(Figure 12C). To explore the correlation of 7 genes
and 31 metabolic pathways, the correlation heatmap
was drawn (Figure 12D). The result showed that there
was a positive correlation among the 7 genes expression
and their expression was positively associated with
FA elongation, pyrimidine metabolism, cysteine and
methionine metabolism and one carbon pool by folate
and negatively associated with valine, leucine and
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Table 1. The results of univariable and multivariable Cox regression analyses.

- Univariable analysis Multivariable analysis
Characteristics
HR (95%CI) P-value HR (95%CI) P-value
Age
<=70 1 1
>70 1.430 (1.056-1.936) 0.021 1.450 (1.065-1.975) 0.018
Sex
Female 1
Male 0.979 (0.726-1.320) 0.890
Stage
| 1 1
1 2.302 (1.590-3.332) <0.001 2.371 (1.637-3.434) <0.001
/v 3.295 (2.309-4.702) <0.001 2.537 (1.756-3.667) <0.001
Treatment type
Chemotherapy 1
Radiotherapy 0.888 (0.658-1.199) 0.438
Risk score
Low 1 1
High 1.042 (1.036-1.049) <0.001 1.039 (1.032-1.046) <0.001
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Figure 10. Development and evaluation of a prognostic nomogram. (A) Nomogram composed of MPPS, age, stage to predict 1-, 3-,
5-year OS probability. (B) Calibration curves of 1-, 3-, 5-year OS by nomogram. 1- (C), 3- (D), 5- (E) year ROC curves of MPPS, nomogram, age,
sex, stage, and treatment type.
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Figure 11. Identification of MPPS-related genes by WGCNA and machine learning. (A) Correlation analysis between module
eigengenes and MPPS by WGCNA. (B) The intersection of WGCNA hub genes, TCGA-DEGs, and GEO genes. (C) The C-index of 117 machine
learning algorithm combinations via LOOCV framework across all validation datasets. (D, E) Determination of the number of MPPS-related
genes by the LASSO regression analysis. (F) The Kaplan-Meier analysis of the high- and low-gene risk scores groups stratified by LASSO and
survival-SVM in the training and validation cohorts.
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isoleucine degradation, selenocompound metabolism, across 18 cancers using CancerSEA data. The results

glycerophospholipid metabolism and arachidonic acid manifested that the signature was positively related to

metabolism. Subsequently, we analyzed the correlation LUAD proliferation, invasion, cell cycle, DNA damage

between the gene signature and 14 functional states and repair (Figure 12E). To investigate the mechanism
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Figure 12. Expression, function, prognosis analyses of MPPS-related gene signature. (A) Correlation of MPPS and gene risk score
by LASSO and survival-SVM. (B) The differences of the expression of 7 genes between TCGA-LUAD and normal samples. (C) The differences of
the expression of 7 genes between the high- and low-MPPS groups. (D) The correlation of 7 genes expression and metabolic pathways. (E)
The correlation of 7 genes expression and 14 biological processes by cancerSEA website. (F) The copy number variation frequency and
location in chromosomes of the 7 genes. (G) The Kaplan-Meier analysis of the high- and low-expression of the 7 genes.
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underlying dysregulated expression, the CNV analysis
was applied. The ECT2, SLC2A1, KRT8, ANLN and
C1QTNF6 showed widespread CNV amplification. In
contrast, GAPDH and LDHA had prevalent CNV
depletion. The locations of CNV alterations of the 7
MPPS-related genes on chromosomes are shown in
Figure 12F. Finally, the prognostic value of the 7 MPPS-
related genes was analyzed by Kaplan-Meier curve in
the TCGA-LUAD cohort (Figure 12G). The upregulation
of the 7 genes all indicated worse survival (P<0.001).

Effect of CLIQTNF6 on infiltrating immune cells of
TME

By investigating MPPS-related genes expression in
specific cells in TME, we found only CLQTNF6 was
highly expressed in fibroblasts and the other six genes
were mainly expressed in malignant cells (Figure 13A).
Moreover, referring to the published literatures, little
is known about the function of CLQTNF6 compared to
the other six genes. Consequently, we focused on the
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Figure 13. Effect of CLQTNF6 on infiltrating immune cells of TME. (A) The heatmap of 7 genes expression in different cells by scRNA-
seq. (B) The differences of CIQTNF6 expression among pan-immune cells, endothelial cells, fibroblasts and malignant cells. (C) The heatmap
of CIQTNF6 expression in TME cells by multiple scRNA-seq datasets. The correlation of CIQTNF6 expression in fibroblasts and immune cells
infiltration (memory CD8* T cell (D), NK cell (E), M2 macrophages (F, G), Treg cell (H), fibroblast (1)). (J) gRT-PCR was performed to detect the
efficiency of CIQTNF6-siRNA transfection. (K) MO macrophages were stimulated by conditional medium from MRC-5 cells with C1QTNF6
silencing for 48h. gRT-PCR was performed to detect the expression of PD-L1, M1 and M2 markers. (L) Representatives and summary of M2
macrophage migration assays induced with MRC-5 cells with or without CLQTNF6 silencing. The data were presented as the meantSD; n = 3.

*P<0.05, **P<0.01, ***P < 0.001.
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function of CIQTNF6. The violin plot showed that the
expression of CLQTNF6 was the highest in fibroblasts,
followed by endothelial cells, malignant cells and pan-
immune cells (Figure 13B). By comparing multiple
single-cell datasets, the similar expression trend was
obtained (Figure 13C). Next, we analyzed the effect
of CIQTNF6 expression in fibroblasts on infiltrating
immune cells of TME by scTIME Portal website.
GZMK*FOS*CD8* T cells have been identified as
memory T cells and are prevalent in para-carcinoma
tissues or normal donors. FCGR3A* NK cell is a classic
NK cell cluster and plays important roles in anti-tumor
immunity. C1QTNF6 expression in fibroblasts was
dramatically negative relation to the infiltration of
GZMK*FOS*CD8" T cells (R=-0.515, P=0.049) and
FCGR3A* NK cell (R=-0.485, P=0.012) (Figure 13D,
13E). SPP1*ACP5* macrophage and SPP1*CLEC5A*
macrophage are biased toward an M2 signature. Their
infiltrating abundance was significantly positive to
C1QTNF6 expression in fibroblasts (SPP1*ACP5*
macrophage: R=0.699, P<0.001; SPP1*CLEC5A*
macrophage: R=0.589, P<0.01) (Figure 13F, 13G).
CTLA4*CD4* Tregs are enriched in tumors and
commonly involved in T cell inhibition across patients
and tumor types. CIQTNF6 expression in fibroblasts
was positive related to CTLA4*CD4* Tregs abundance
in TME, indicating high C1QTNF6 expression in
fibroblasts might result in more CTLA4*CD4* Tregs
infiltration in TME (R=0.456, P=0.019) (Figure 13H).
Interestingly, CLQTNF6 expression in fibroblasts was
also positively associated with fibroblast infiltration in
TME (R=0.547, P<0.01) (Figure 13I). Subsequently, we
analyzed the cell communication between fibroblasts
and immune cells. The results suggested that fibroblasts
had strong interactions with M2 macrophages including
C1QC*PLTP* macrophage, SPP1*ACP5* macrophage,
SPP1*CLEC5* macrophage (Supplementary Figure 6A).
Furthermore, the ligand-receptor interaction analysis
suggested that fibroblasts were very likely to interact
with M2 macrophage through CD74-COPA, CD74-APP
and CD74-MIF (Supplementary Figure 6B-6D). By
analyzing the hallmarks enrichment between high and
low C1QTNF6 expression groups, we found multiple
pathways related to M2 polarization were enriched
in high C1QTNF6 expression groups including NF-
kB signaling pathway, glycolysis, IL6/JAK/STAT3
signaling pathway, TGF-p signaling pathway, Wnt/B-
catenin signaling pathway, and Hedgehog signaling
pathway (Supplementary Figure 6E). Consequently, we
hypothesized that CLQTNF6 expression in fibroblasts
may affect M2 macrophage polarization or recruitment.

To validate the hypothesis, we constructed MRC-5
cells with CLQTNF®6 silencing by siRNAs. As shown
in Figure 13J, the specific cells were successfully
established with high silencing efficiency. After 48h,

the supernatant was collected, centrifuged and prepared
as CM. To detect the effects of silencing CLQTNF6 in
MRC-5 cells on macrophages polarization, we cultured
MO macrophages with the mixture of CM and FBS-
containing medium (1:1) for 48h. Compared to the
control, the group with C1QTNF6 silencing had
significantly decreased PD-L1 and M2 macrophage-
related genes expression (CD163, CD206). Conversely,
M1 macrophage-related genes expression (CD8O0,
CD86) were obviously increased when C1QTNF6 was
silenced in MRC-5 (Figure 13K). Furthermore, we
successfully induced MO to M2 macrophage by
IL-4 and IL-13 stimulation (Supplementary Figure
6F). The macrophage migration assay showed that
silencing C1QTNF6 in MRC-5 cells could reduce M2
macrophage migration in vitro (Figure 13L). These
fundings suggested that CLQTNF6 expression in MRC-
5 cells promoted M2 macrophage polarization and
recruitment.

Cause effect of CLQTNF6 on lung cancer onset

To evaluate the cause effect of C1QTNF6 on
lung cancer onset, MR analysis was performed. 340
eligible SNPs were used as instrumental variables for
C1QTNF6 and 274 common SNPs was obtained after
harmonization. The funnel plot and leave-one-out
sensitivity analysis showed that there was no obviously
heterogeneous SNPs (Figure 14A and Supplementary
Figure 7). MR analysis revealed that C1QTNF6
expression increased the risk of lung cancer (Figure
14B). Except weighted mode, the other four methods all
showed the same trend (OR (95%CI): Inverse variance
weighting (IVW) 1.029 (1.023-1.035) P < 0.001;
MR Egger 1.015 (1.002-1.028) P =0.029; Weighted
median 1.017 (1.008-1.027) P < 0.001; Simple mode
1.084 (1.052-1.117) P < 0.001) (Figure 14C). there
was no heterogeneity and horizontal pleiotropy (the
Cochrane’s Q-value > 0.1; MR PRESSO global test
P = 0.236), indicated that the result of MR analysis was
credible. Moreover, Steiger filtering further ensured
directionality with all P-values of SNP less than 0.05.
However, Bayesian co-localization showed that there
was no genetic co-localization between CIQTNF6 and
lung cancer (PP.H4=4.59e-03) (Figure 14D).

DISCUSSION

LUAD is a highly aggressive malignancy with an
unfavorable prognosis and average 5-year survival rate
of only 15% [24]. With the rapid development of
immunotherapy, it has shown great potential in the
treatment of cancer. However, only about one third
of patients can benefit from immunotherapy due to
heterogeneity and adaptive evolution of tumor cells
[4]. To advance precision medicine, it is necessary to
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stratify cancer patients into distinct groups according
to their prognosis and immunotherapy response
before treatment. With the advances in sequencing
technology, more and more gene expression-based
prognostic models have been constructed to predict
the prognosis and immunotherapy response of cancer
patients [21, 25, 26]. Unfortunately, the most models
have not robust performance in other cohorts due to
sequencing data from different platforms. To overcome
this obstacle, pairing multiple markers to construct a
prognostic model was put forward creatively. Metabolic
reprogramming has been identified as a new hallmark
of cancer and tightly associated with clinical outcomes
and immunotherapy efficacy. Tumor cells reprogram
their metabolism to compete for nutrients with other
cells in TME, deal with oxidative stress, and reshape an
immunosuppressive TME to evade the immune system
[27, 28]. Comprehensively depicting the metabolic
profile of LUAD is promising to predict the survival
and immunotherapy efficacy of LUAD patients.

In this study, we assessed 84 metabolic pathways
involved in 12 kinds of metabolism in LUAD by
sSGSEA and analyzed the metabolic heterogeneity of
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LUAD. Then, we paired the 84 pathways and
identified 19 metabolic pathway pairs by univariable,
LASSO, multivariable Cox regression analysis. Using
the 19 metabolic pathway pairs, we established a
MPPS system and stratified LUAD patients into the
high- and low-MPPS group. The high-MPPS group
was characterized by high galactose metabolism,
FA elongation, pyrimidine metabolism, cysteine
and methionine metabolism, one carbon pool by
folate and aminoacyl-tRNA biosynthesis. The low-
MPPS group was characterized by dominant caffeine
metabolism, valine, leucine and isoleucine degra-
dation, selenocompound metabolism and arachidonic
acid metabolism. Galactose is another important
carbohydrate and involved in glycosylation, energy
storage and pentose phosphate pathway directly or
indirectly [29]. Many tumors preferentially use
glycolysis for survival and proliferation and have
metabolic vulnerability to galactose. It has been
reported that tumor cells with Akt activation will
be induced cell death in galactose culture [30].
Thus, LUAD with high galactose metabolism may
be more adaptative for various energy substances.
FA biosynthesis includes de novo synthesis and FA
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Figure 14. Mendelian randomization analysis of CLQTNF6 and lung cancer. (A) The funnel plot displayed the distribution of
instrumental variables for CLQTNF6. (B) Scatter plot showed that CLQTNF6 increased the risk of lung cancer. (C) Forest plot showed the cause
effect of CLIQTNF6 on lung cancer onset. (D) The co-localization analysis of CLQTNF6 and lung cancer.
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elongation. Elongation of very long-chain fatty
acid (ELOVL) family enzymes are responsible for
catalyzing FA elongation. Disruption of FA elongation
by silencing ELOVL5 can suppress proliferation and
invasion of renal cell carcinoma [31]. Moreover,
VLCFA deficiency results in a marked decrease in
ceramides as well as downstream glucosylceramides
and sphingomyelins, which impairs mitochondrial
morphology and renders cancer cells sensitive to
oxidative stress and cell death [32]. Pyrimidine
metabolism, one carbon pool by folate and amino-
acyl-tRNA biosynthesis are tightly associated to
nucleotides biosynthesis and translation, which are
indispensable for rapid proliferation of malignant cells.
UBE2T-mediated Akt K63 ubiquitination and Akt/fB-
catenin activation accelerate hepatocellular carcinoma
development by increasing pyrimidine metabolism
[33]. Combination of pyrimidine synthesis inhibitors
and other anti-tumor drugs is promising to Kill tumor
cells [34]. Nucleotide synthesis and DNA methylation
are highly dependent on one carbon pool by folate,
which supports vital events for growth and survival
[35]. Methionine and cysteine, two of the most
representative sulfur amino acids, play a crucial role in
protein structure, metabolism, immunity, and especially,
oxidation. They are extremely sensitive to almost all
forms of reactive oxygen species and protect cells
from oxidative stress damage [36]. Dietary restriction
of methionine and cysteine will alter the energetic
metabolism and enhance the sensitivity of gliomas
to ferroptosis [37]. These metabolic pathways are
highly elevated in high-MPPS group and may shape
a refractory phenotype. Conversely, many anti-tumor
metabolic pathways were elevated in the low-
MPPS group. Caffeine can enhance anti-tumor activity
of anti-PD-1 monoclonal antibody by increasing
the infiltration of CD4* and CD8* T lymphocytes
and decreasing the infiltration of Treg cells [38].
The branched-chain amino acids (BCAAs) (valine,
leucine, and isoleucine) are essential amino acids that
play important roles in metabolic regulation. The
accumulation of BCAAs can activate mTOR signaling
pathway to promote tumor proliferation [39]. Thus,
degradation of BCAAs may be harmful to tumor
progression. Se compounds have been demonstrated as
anticancer agents in vivo and in vitro experiments.
They can prevent oncogene activation and cancer cell
differentiation through scavenging of ROS, tumor-
promoting eicosanoids and inducing tumor suppressor
genes expression [40]. Arachidonic acid metabolism
is a double-edged sword in tumor initiation and
progression. On the one hand, arachidonic acid can
inhibit M2 macrophage polarization and enhance
ferroptosis sensitivity to suppress tumor progression
[41, 42]. On the other hand, it promotes stromal
cell-mediated immunosuppression in NSCLC [43].

Consequently, the MPPS system divided LUAD patients
into distinct metabolic reprogramming subgroups well.

The MPPS system displayed robust performance on
recognizing LAUD patients’ prognosis whether in
training cohort or validation cohorts. The high-MPPS
group had a worse prognosis than the low-MPPS
group. ROC curves showed the model had high
accuracy on prediction of prognosis. Comparing to the
other published models and several clinical features
(age, sex, stage and treatment type), the MPPS model
had significantly improved accuracy. Moreover, the
model was also applicable in the other 32 tumors.
These results suggest that the MPPS model is
promising to be applied in the clinical practice.

Increasing evidence demonstrates that metabolic
reprogramming in TME affects anti-tumor immunity.
For example, targeting glutamine metabolism increased
antitumor immunity in mouse models by upregulating
mitochondrial metabolism of cytotoxic T lymphocytes
in NSCLC [44, 45]. Treg cells rely on oxidative
phosphorylation and FA oxidation to support their
survival and differentiation [46]. Lipid metabolic
reprogramming can prevent effector T cells senescence
and enhance immunotherapy efficacy [47]. These also
reveal that deeply understanding and depicting metabolic
heterogeneity can favor immunotherapy. However, up
to now, there is still a lack of comprehensive depiction
of heterogeneous metabolic landscape in TME. The
evaluation of 84 metabolic pathways in LUAD revealed
the metabolic heterogeneity of LUAD in this study.
Considering the tight association of metabolism and
immunotherapy, we wondered whether the LUAD
patients with different MPPS had different responses to
immunotherapy. Using seven independent immuno-
therapy cohorts, we found that the patients with low-
MPPS scores commonly had higher immunotherapy
response rates than those with high-MPPS scores. To
further explore the alteration of immune cells, molecules
and function, it was revealed that more immune cells
infiltration, immune-related genes expression, and
immune function activation were in the low-MPPS
group, such as activated B cells, activated CD8* T cells,
activated dendritic cells, eosinophil and macrophage
and the immune checkpoint, HLA, T cell co-inhibition
or stimulation, type Il IFN response. The low-MPPS
group also had higher cancer—immunity cycle scores in
cancer antigen presentation, priming and activation,
CD4* T cell, dendritic cell, B cell, Th17 cell recruiting,
and immune cells tumor infiltration. These results
implied that LUAD with the low-MPPS score was
inclined to be a “hot” TME and LUAD with the high-
MPPS score was a “cold” TME. TIDE score also
validated the conclusion and T cell dysfunction was
higher in the low-MPPS group than the high-MPPS
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group. With the increase of MPPS, the inflamed TME
was transformed to the excluded TME. TMB is emerging
as another indicator of immunotherapy except for PD-
L1 expression. The high-MPPS group had higher TMB
compared to the low-MPPS group. The LUAD patients
with high TMB and low MPPS had the best prognosis
and those with low TMB and high MPPS had the worst
prognosis. Consequently, the bad prognosis of the high-
MPPS group is not likely due to TMB. By identifying
the sensitivity of 137 chemotherapy drugs, multiple
drugs sensitive to the high- or low-MPPS group were
determined, which may be helpful to guide precision
medicine of LUAD patients.

Although targeting cancer metabolism to improve
immunotherapy efficacy is highly promising, the
crosstalk of metabolic pathways between tumor cells
and immune cells in TME lead to disruption of normal
metabolic pathways in immune cells by strategies to
inhibit/alter cancer metabolism [48]. Thus, it is critical
to target the specific metabolic pathways to kill tumors
without interfering with or even promoting anti-tumor
immunity. To identify such pathways, we analyzed
the metabolic pathway pair in different kinds of cells
by scRNA-seq data. Interestingly, the average value
of cysteine and methionine metabolism/ganglio series
biosynthesis is significantly elevated in malignant cells
than the other cells including immune cells, fibroblasts,
endothelial cells. Many previous studies have reported
that tumor cells are highly dependent on cysteine and
methionine metabolism than normal cells and they are
promising targetable weaknesses of cancer cells [49].
Ganglio series biosynthesis are also tightly related to
some malignant phenotypes such as metastasis [50]. As
a result, this metabolic pathway pair may be promising
to be a metabolic target in LUAD therapy.

The previous studies mostly choose the modeling
algorithms to identify the hub genes based on their
knowledge limitations and preferences. To overcome
this shortcoming, we firstly identified the MPPS-related
hub gene module by WGCNA and then, integrated
117 machine learning algorithms to further recognize
the prognostic signature. Finally, seven genes were
identified, in which CLQTNF6 caught our attention due
to its specific expression in fibroblast. Some studies
have suggested that silencing CLQTNF6 in LUAD cells
can suppress the proliferation, migration and invasion of
LUAD cells [51]. CLQTNF6 is a prognostic indicator
for poor survival across many cancers including LUAD
and one of the most relative genes of TAM [52, 53].
However, there is still little knowledge about the
function of CIQTNF6 in tumors.

By analyzing multiple scRNA-seq datasets, we found
CL1QTNF6 expression was mainly focused on fibroblast

and its expression in fibroblast was positively related
to the infiltration of M2 macrophages, Treg cells, and
negatively related to the infiltration of memory CD8* T
cells, NK cells. Moreover, there existed strong interaction
between M2 macrophages and fibroblast by intercellular
communication analysis. In vitro experiments also
validated that the CM from fibroblast“*?™F¢-- would
promote the transformation of MO into M1 but not M2
macrophage, decrease PD-L1 expression, and reduce
M2 macrophage migration. Hallmarks enrichment
analysis showed that NF-kB signaling pathway,
glycolysis, IL6/JAK/STAT3 signaling pathway, TGF-
signaling pathway, Wnt/B-catenin signaling pathway,
and Hedgehog signaling pathway were enriched in high
C1QTNF6 expression group, which were reported to
participate in M2 macrophage polarization. Inhibition of
autophagic degradation of RELA will rescue activity of
NF-«xB signaling pathway and shape the phenotype of
hepatoma-polarized M2 macrophages [54]. Activation
of IL6/JAK/STATS signaling pathway in macrophages
can promote M2 polarization and PD-L1 expression [55,
56]. A large amount of lactate produced by glycolysis
induces M2 macrophage polarization and promotes the
invasion of pituitary adenoma [57]. Mesenchymal stem
cells can induce M2 polarization phenotype via secreting
TGF-B to activate Akt/FoxOl pathway in LPS-
stimulated macrophages [58]. It is also reported that
crosstalk between hepatic tumor cells and macrophages
by Wnt/B-catenin signaling pathway can promote M2
polarization [59]. FOXML1 can induce M2 polarization
through SEMAS3C/NRP2/Hedgehog signaling [60].
The results indicated that CIQTNF6 may be tightly
associated with M2 polarization. Lin et al. reported that
after silencing C1LQTNF6, the enrichment of cytokine-
cytokine receptor interaction pathways was reduced
in LUAD cell by RNA sequencing, which indicated
that CLQTNF6 may participate in cytokine-cytokine
receptor interaction pathways directly or indirectly [61].
Consequently, CLQTNF6 expression in fibroblast may
promote M2 macrophage polarization and migration by
regulating cytokine-cytokine receptor interaction.

Mendelian randomization (MR) is as a valuable tool
for inferring causal relationships between exposure
and outcome by leveraging Genome wide association
study (GWAS) data. The result of MR suggested
that CLQTNF6 expression had the increased risk of
lung cancer although there was no evidence of co-
localization. The MR result was consistent with the
expression and prognosis of CLQTNF6 in LUAD.

There are still some limitations in our study. Although
we identified two distinct metabolic subtypes with
significantly different prognosis and immunotherapy
efficacy, some immunotherapy cohorts were from the
studies about urothelial cancer or melanoma and more
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LUAD-related immunotherapy cohorts are needed to
validate our conclusion. The drug sensitivity needs
further validation by IC50 assays. Although we
identified the potential metabolic pathways associated
with prognosis, the targetable molecules for the
pathways remain to be explored. The underlying
mechanism that CLQTNF6 regulated M2 macrophage
polarization and migration remains to be elucidated.
Moreover, the relationships of CLQTNF6 and the other
immune cells need further exploration. The conclusion
of MR needs further experimental validation. The above
insufficient will be the focus of our future study.

CONCLUSIONS

Based on 84 metabolic pathways, we constructed a
MPPS model to accurately predict the prognosis and
immunotherapy efficacy of LUAD patients. Targeting
C1QTNF6, a MPPS-related gene, is promising to
suppress M2 macrophage polarization and migration.

MATERIALS AND METHODS
Data collection and processing

Gene expression data of LUAD and corresponding
clinical characteristics were respectively retrieved
from The Cancer Genome Atlas (TCGA) (HTseg-
fragments per kilobase million, HTseq-FPKM)
(https://cancergenome.nih.gov/) and Gene-Expression
Omnibus (GEOQO) (https://www.nchi.nlm.nih.gov/geo/)
databases. Patients without prognostic information or
survival time = 0 were excluded. Then 500 LUAD
cases from TCGA database and 1009 LUAD cases from
GEO database were retrieved as the training cohort
and validation cohort (GSE3141: 58 cases; GSE13213:
117 cases; GSE30219: 83 cases; GSE31210: 226 cases;
GSES50081: 127 cases; GSE72094: 398 cases). The
demographic was shown in Supplementary Table 1. The
ComBat method from the ‘SVA’ R package was used
to remove the batch effects among different GEO
datasets. Pan-cancer mRNA expression profiles and
prognostic information were obtained from UCSC
Xena website (https://xenabrowser.net/datapages/). The
somatic mutation and copy number variation (CNV)
of TCGA-LUAD were also curated from TCGA
database. Eighty-four metabolic pathway gene sets were
extracted from the KEGG database. The abbreviations
of 84 metabolic pathways were listed in Supplementary
Table 2. In addition, 42 LUAD tissues were collected
from the Department of Thoracic Surgery, Shandong
Provincial Hospital. The prognostic information was
also followed up.

Seven immunotherapeutic cohorts were acquired to
validate the prediction of immunotherapy efficacy using

the MPPS model: advanced urothelial cancer treated with
atezolizumab, an anti-PD-L1 antibody (IMvigor210
cohort) [62]; melanoma treated with anti-CTLA4
and anti-PD-1 therapy (GSE91061) [63]; metastatic
melanoma treated with anti-CTLA4 therapy [64];
NSCLC treated with nivolumab or pembrolizumab,
an anti-PD-1 antibody (GSE126044) [65]; NSCLC
treated with anti-PD-1/PD-L1 antibody (GSE135222)
[66]; melanoma treated with adoptive T cell therapy
(ACT) (GSE100797) [67]; Melanoma treated with anti-
PD-1 antibody (GSE78220). The response and benefit
of TCGA cohort were calculated based on the Tumor
Immune Dysfunction and Exclusion (TIDE) website
(http://tide.dfci.harvard.edu/) by integrating TIDE score,
interferon gamma (INFG), microsatellite instability
(MSI) score, CD274, Merck18, CD8, myeloid-derived
suppressor cells (MDSC), cancer associated fibroblast
(CAF) and tumor-associated macrophages (TAM) M2.

To generate eQTL instruments for C1QTNF6,
genetic variants located within 1000 kb on either
side of the coding sequence (in cis) that are robustly
associated with gene expression were extracted using
eQTLs summary statistics obtained from the eQTLGen
Consortium  (https://www.eqtlgen.org/cis-eqtls.html).
The data were established based on 26,609 blood
samples of Europeans [68]. Lung cancer GWAS data
(ieu-a-987) were obtained from the Transdisciplinary
Research in Cancer of the Lung (TRICL). The GWAS
data included 29,863 cases and 55,586 controls from
European.

Estimation of metabolic pathways heterogeneity in
LUAD

The levels of 84 metabolic pathways were estimated
in each sample by ssGSEA. Then the metabolic
differences of LUAD and normal samples were
analyzed by “limma” package. An unsupervised
consensus clustering according to 84 metabolic
pathways scores was performed to identify distinct
LUAD metabolic subtypes, which were showed by the
principal component analysis (PCA). The metabolic
profiles of TME cells including endothelial cells,
malignant cells, cancer-associated fibroblasts (CAFs)
and pan-immune cells were compared using single-cell
RNA sequencing data (GSE111907).

Development and evaluation of a MPPS system

Pairwise comparisons of the 84 metabolic pathways’
scores in the training cohort were performed. The
algorithm presented a scoring system in which the score
of the metabolic pathway-pair was recorded as 1 if the
expression level of the first metabolic pathway’s score
was higher than that of the second; otherwise, it was

WWWw.aging-us.com

8794

AGING


https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
http://tide.dfci.harvard.edu/
https://www.eqtlgen.org/cis-eqtls.html

recorded as O, resulting in the construction of a 0 or 1
matrix. A metabolic pathway pair was deleted if the
proportion of 0 or 1 was more than 80% or less than 20%
of the samples in the training cohort. The abbreviations
of the qualified metabolic pathway pairs were listed in
Supplementary Table 2. Next, the qualified metabolic
pathway pairs were enrolled for univariable, LASSO and
multivariable Cox regression analysis to construct a
MPPS system. The MPPS was calculated as follows:

n
MPPS = ZCoef (metabolic pathway pair i)
i=1
*Value (metabolic pathway pair i)

According to the optimal cut-off point of MPPS
determined by the ‘survminer’ package, LUAD patients
were stratified into the high- and low-MPPS groups.
The optimal cut-off points were determined separately
in the training and validation cohorts. The survival rates
of the high- and low-MPPS groups were compared
by Kaplan-Meier method in the training cohort and
validation cohorts. Receiver operating characteristic
(ROC) curves, generated by the “timeROC” package
and “Aalen” weighting method, and C-index were used
to detect the accuracy of MPPS. Univariable and
multivariable Cox regression analyses were used to
detect the prognostic roles of the clinical characteristics
and MPPS. The independent prognostic factors were
combined to develop a predicting nomogram by R
package “rms”. The calibration curve was used to detect
the consistency of the nomogram. The optimal cut-off
value was calculated separately for each cancer, when
we evaluated the performance of MPPS in pan-cancer.

Enrichment analysis and functional annotation

GO and KEGG pathway analyses were performed
to investigate the variation in biological processes
between high- and low-MPPS groups. The results
of GO annotation were displayed by an online
tool bioinformatics (https://bioinformatics.com.cn/).
The Hallmark gene set was used to explore the
distinction in various biological signatures between the
high- and low-MPPS groups. The CancerSea website
(http://biocc.hrbmu.edu.cn/CancerSEA/) was used to
investigate 14 biological processes of multiple genes
across various cancers.

Protein-protein interaction (PPI) network

The differentially expressed genes (DEGSs) involved in
MPPS between high- and low MPPS groups were input
in STRING website (https://string-db.org/). PPI network
was constructed with a minimum confidence score >0.4
and visualized by the software Cytoscape v3.9.1.

TME landscape analyses

Immune score, stromal score and ESTIMATE
score were calculated using the ESTIMATE algorithm
[69]. Immune cells infiltration and functions were
evaluated by ssGSEA [70]. Expression of various
immune checkpoint genes and HLA-related genes
was compared between different MPPS scores groups.
The cancer-immunity cycle scores of TCGA-LUAD
samples were downloaded from the TIP database
(http://biocc.hrbmu.edu.cn/TIP/) [71]. The discrepancy
of the cancer-immunity cycle scores between the high-
and low-MPPS groups was compared. The differences
of MPPS scores among immune-inflamed, excluded
and desert phenotypes had been analyzed [62].

Tumor mutation burden (TMB) and drug sensitivity
analyses

The “maftools” R package was employed to
explore the mutation frequency in different MPPS
subgroups [72]. Then, the correlation between MPSS
and TMB was analyzed. Subsequently, we evaluated
the synergistic effect of TMB and MPPS score on
prognostic stratification. A total of 137 drugs sensitivity
in different MPPS groups was analyzed by R package
“pRRophetic” and visualized in the form of parliament
plot by Hiplot Pro (https://hiplot.com.cn) [73].

WGCNA

Co-expression gene networks of TCGA-LUAD were
constructed using the WGCNA package. The unsigned
network was selected. An appropriate soft threshold
B was calculated to meet the criteria for the scale-free
network. The optimal f was 4. Then, the weighted
adjacency matrix was converted into a topological over-
lap matrix (TOM), and the corresponding dissimilarity
was generated (1- TOM). Finally, the dynamic tree
cut algorithm was used to identify the modules, and 80
was selected as the minimum number of genes for each
module. The modules with the correlation coefficient
R > 0.2, P-value < 0.05 were regarded as the key
modules, and the genes with GS > 0.25, MM > 0.2 were
regarded as key genes. These genes intersected by
TCGA DEGs and GEO genes were used as candidate
genes for subsequent analysis.

Hub genes identified from machine learning-based
integrative approaches

Ten machine learning algorithms and 117 algorithm
combinations were utilized to identify hub genes related
to MPPS with high accuracy and stability performance
on prognostic prediction. The integrative algorithms
included random survival forest (RSF), stepwise Cox,
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elastic network (Enet), Lasso, Ridge, CoxBoost, partial
least squares regression for Cox (plsRcox), generalised
boosted regression modelling (GBM), supervised
principal components (SuperPC), and survival support
vector machine (survival-SVM). The procedure was
as follows: (a) Univariable Cox regression analysis
was used to screened out prognostic genes from the
candidate genes; (b) Next, 117 algorithm combinations
were performed on the prognostic genes to identified
hub genes based on the leave-one-out cross-validation
(LOOCV) framework in the TCGA-LUAD cohort;
(c) All hub genes derived from 117 algorithm combi-
nations were validated in six independent validation
cohorts (GSE13213, GSE31210, GSE3141, GSE30219,
GSE50081, GSE72094); (d) The hub genes with the
highest average C-index across all validation cohorts
were considered optimal.

scRNA-seq analysis

GSE111907 was retrieved to evaluate the metabolic
pathway levels and hub genes expression in malignant,
pan-immune cells, endothelial and fibroblast cells. The
hub genes expression in various cell subtypes of TME
was explored by TISCH2 website (http://tisch.comp-
genomics.org/). GSE127465 was used to analyze
intercellular communication and correlation of hub
gene expression and immune cells infiltration using
sCTIME Portal website (http://sctime.sklehabc.com/
unicellular/home).

RNA extracting and real-time PCR

Total RNA was extracted from LUAD frozen tumor
tissues and cells using the AG RNAex Pro Reagent
(Accurate Biotechnology (Hunan) Co., Ltd., China).
The mRNA (500 ng) was converted into cDNA
using Evo MMLVRT Master Mix kit (Accurate
Biotechnology (Hunan) Co., Ltd., China). Then, cDNA
was amplified with SYBR Premix Ex Tap kit (Accurate
Biotechnology (Hunan) Co., Ltd., China). The mRNA
levels were assayed by qRT-PCR using the Roche
LightCycler® 480 system. 244¢t method was used
to obtain relative quantitation (RQ) values, with 18S
rRNA as endogenous control. The sequences of the
primers were listed in Supplementary Table 3.

Cell culture and transfections

THP-1 cell was purchased from the Procell,
Wuhan, China. MRC-5 cell was a gift from Shufang
Chen (Shandong Provincial Hospital). MRC-5 cell
was cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (HyClone, USA), and THP-1 cell was cultured
in RPMI H1640 (HyClone, USA), supplemented with
10% fetal bovine serum (FBS) (BI, Israel) in a

humidified atmosphere of 5% CO2 and 37° C according
to protocol. CLQTNF6 siRNAs (Huzhou Hippo
Biotechnology Co., Ltd., Zhejiang Province, China)
were transfected into cells using jetPRIME (Polyplus-
transfection, Illkirch, France) according to the manual.
The sequences of CIQTNF6 siRNAs were as follows.

SICIQTNF6#1:
sense (5°-3’):
(dT)

antisense (5’-3”): UACGUCUCCUUGUAAUUCC(dT)
(dT)
SIC1QTNF6#2:
sense (57-3°):
(dT)

antisense (5°-3”): UCAAGGUUCACAAAGACCC(T)
(dT)

GGAAUUACAAGGAGACGUA(T)

GGGUCUUUGUGAACCUUGA(T)

Preparation of conditioned medium (CM)

MRC-5 cells were transfected with CLQTNF6 siRNAs for
48h. The medium was replaced using serum-free medium
and cells were cultured for additional 24h. Next, the
supernatant was centrifuged at 300xg for 5 min and
collected to induce TAM polarization and migration.

Polarization of THP-1 cells

To explore the effects of CLQTNF6 expression of
MRC-5 on macrophage polarization, THP-1 cells were
induced to MO macrophage by phorbol 12-myristate 13-
acetate (PMA) stimulation for 24h in six-well plates.
Then, 2 ml mixture of CM and FBS-containing medium
(1:1) was added for 48h. Finally, the total RNA was
extracted and the M1- or M2-related markers were
detected by gRT-PCR.

Macrophage migration assay

THP-1 cells were induced to MO state under PMA
stimulation. Then, the MO macrophages were polarized
into M2 macrophages via IL4 and IL13 stimulation.
20,000 M2 macrophages were plated in the upper
chamber in the serum-free medium. The lower
chambers were filled with 600 pl mixture of CM and
FBS-containing medium (1:1). After 48h, the non-
migrated cells in the upper chambers were removed and
the migrated cells were stained with crystal violet for 30
min. The images were observed by microscope and the
numbers of migrated cells were calculated by Image J.
Instrumental variable selection and Mendelian
randomization

Only SNPs of CLQTNF6 cis-eQTL satisfying the
following criteria were included as strong instrumental
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variables: (i) showed genome-wide significant
association (P < 5 x 10 ~®); (ii) showed independent
association [linkage disequilibrium (LD) clumping
r < 0.1; kb=500]; (iii) F-statistic > 10; (iv) not a
palindromic SNP. Finally, 320 SNPs were identified
as strong instrumental variables for CLQTNF6. For the
MR analysis, the IVW method is the primary method.
In addition, MR Egger, weighted median, simple mode
and weighted mode methods were also used to detect
the cause effect by R package “TwoSampleMR”.
Leave-one-out sensitivity analysis was performed to
evaluate the influence of each SNP on the outcome.
Heterogeneity and potential horizontal pleiotropy
were assessed by the Cochrane’s Q-value and MR-
PRESSO global test. Steiger filtering was used to
detect the directionality of the association between
C1QTNF6 and lung cancer. Bayesian co-localization
analyses were used to assess the probability that two
traits share the same causal variant using the ‘coloc’
package (https://github.com/chriswallace/coloc) with
default arguments [68]. All SNPs within 1 Mb up
and down stream of the leading SNPs were retrieved
for colocalization analysis to analyze the posterior
probability of H4 (PP.H4) PP.H4 > 80% was defined
as having evidence of co-localization.

Statistical analyses

The statistical analysis of this study was performed
using R v4.1.3, GSEA v4.2.3, GraphPad Prism 8
and SPSS v26. For quantitative data, the statistical
significance of normally distributed variables was
estimated by the Student’s t-test, and non-normally
distributed variables were analyzed using the Wilcoxon
rank sum test. When comparing between more than two
groups, the Kruskal-Wallis test and one-way analysis of
variance as non-parametric and parametric methods
were made, respectively. Statistical significance was set
at P < 0.05 unless otherwise stated. False discovery rate
(FDR) was used to adjust P-value.
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Supplementary Figure 1. Differences of metabolic pathway pairs, survival time and status between the high- and low-MPPS
groups. (A) Differences of 19 metabolic pathway pairs between the high- and low-MPPS groups. (B) The risk plot of MMPS indicated that as
MMPS increased, OS time decreased while mortality rose.
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Supplementary Figure 2. The correlation of MPPS and clinical traits, and its performance in clinical subgroups. Differences of
MPPS between different ages (A), sexes (B), survival status (C), stages (D), T stages (E), N stages (F), and M stages (G). (H) Sankey diagram
showed the relationship of MPPS groups, survival status, age, sex, and stage. The Kaplan-Meier survival curves of the high- and low-MPPS
groups in different clinical subgroups. Age <= 70 (1), Age > 70 (J), Male (K), Female (L), Stage I+l (M), Stage IlI+IV (N), NO stage (0), N1+N2+N3
stage (P).
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Supplementary Figure 3. The hallmarks enrichment and metabolic pathways variation between the high- and low-MPPS

groups. (A) The hallmarks enrichment between the high- and low-MPPS groups. (B) The differences of metabolic pathways between TCGA-
LUAD and normal tissues. (C) The correlation heatmap of MPPS and metabolic pathways. *P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 4. TIDE scores and IPS of the high- and low-MPPS groups. (A) T cell dysfunction scores of the high- and low-
MPPS groups. (B) MPPS of desert, excluded, inflamed immune phenotypes. (C) IPS of the high- and low-MPPS groups.
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Supplementary Figure 5. Evaluation of MPPS-related gene signature. (A) The 1-, 3-, 5-year ROC curves of MPPS-related gene
signature in the training and validation cohorts. (B) The Kaplan-Meier survival curves of the high- and low-gene risk score groups in 42 LUAD
patients by qRT-PCR. (C) The 1-, 3-, 5-year ROC curves of OS of 42 LUAD patients predicted by MPPS-related gene signature.
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Supplementary Figure 6. Intercellular communications between fibroblasts and immune cells in LUAD TME. (A) Intercellular
communications network of fibroblasts and immune cells in LUAD TME. (B-D) The ligand-receptor interaction between fibroblasts and M2
macrophages. (E) The hallmarks enrichment between the high- and low-C1QTNF6 expression groups in TCGA-LUAD. (F) M2 macrophage
markers expression of induced M0 and M2 macrophages by gRT-PCR.
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Supplementary Figure 7. Leave-one-out sensitivity analysis of instrumental variables for CLQTNF6.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Table 2.

Supplementary Table 1. The clinical information data of
LAUD patients from TCGA and GEO databases.

Variables

Discovery cohort

Validation cohort

TCGA (500) GEO (1009)
Gender
Male 230 (54.00%) 471 (46.70%)
Female 270 (46.00%) 480 (47.60%)
NA - 58 (5.70%)
Age at Diagnosis
Mean (SD) 65.26 (10.05) 64.62 (10.11)

Median Survival Time
0S, Days (IQR)
Survival Event

654.50 (707)

1114 (1172)

Alive 318 (63.60%) 686 (68.00%)
Dead 182 (36.40%) 323 (32.00%)
Stage

I 266 (53.20%) 593 (58.80%)
I 119 (23.80%) 173 (17.10%)
i 81 (16.20%) 82 (8.10%)
v 26 (5.20%) 15 (1.50%)
NA 8 (1.60%) 146 (14.50%)

SD, standard deviation; IQR, inter-quartile range.

Supplementary Table 2. The abbreviations and matched full names of metabolic pathways and metabolic
pathway pairs.

Supplementary Table 3. The list of primers used in this study.

Gene Forward primer (5'-3") Reverse primer (5'-3")
C1QTNF6 CACCATCCTGAAGGGTGACA AGACCCTTTCGAAGAGCAGC
ECT2 ACCCCTAACAGCAATCGCAA CAAGACTTTGGGGTGTCTCCA
SLC2A1 TGGCATCAACGCTGTCTTCT CTAGCGCGATGGTCATGAGT
ANLN CGCCTCAGACTCCTGGTTTT GCTCCAGCAGTTTCTCCGTA
GAPDH GGGAGCCAAAAGGGTCATCA GCATGGACTGTGGTCATGAGT
LDHA GCCGTCTTAATTTGGTCCAGC ACTCCATACAGGCACACTGG
KRT8 ATCAACAACCTTAGGCGGCA AGCTCCCGGATCTCCTCTTC
CD80 ATCACCATCCAAGTGTCCATACCTC AGAAACATTGTGACCACAGGACAG
CD86 TGGCCTAGGGTACAGGCAACA GCCCAGATAGAAGTGGCTCCAG
CD163 AAAAAGCCACAACAGGTCGC CTTAAAGGCTGAACTCACTGGG
CD206 GGGGAAAGGTTACCCTGGTG TCAAGGAAGGGTCGGATCGT
CD274 TCCTTGGCGATTATTTCCATGTC GCCGACTACAAGCGAATTAC
18S(rRNA) AAACGGCTACCACATCCAAG CCTCCAATGGATCCTCGTTA
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