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INTRODUCTION 
 

Chronic obstructive pulmonary disease (COPD) is a 

respiratory disease characterized by persistent airway 

inflammation and is now the third leading cause  
of death worldwide [1]. Chronic inflammation  

in the periphery of the bronchi and fine bronchioles 

could lead to lung tissue destruction, fibrosis and 
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ABSTRACT 
 

Background: Progress is being made in the prevention and treatment of chronic obstructive pulmonary disease 
(COPD), but it is still unsatisfactory. With the development of genetic technology, validated genetic information 
can better explain COPD. 
Objective: The study utilized scRNA-seq and Mendelian randomization analysis of eQTLs to identify crucial 
genes and potential mechanistic pathways underlying COPD pathogenesis. 
Mehods: Single-cell sequencing data were used to identify marker genes for immune cells in the COPD process. 
Data on eQTLs for immune cell marker genes were obtained from the eQTLGen consortium. To estimate the causal 
effect of marker genes on COPD, we selected an independent cohort (ukb-b-16751) derived from the UK Biobank 
database for two-sample Mendelian randomization analysis. Subsequently, we performed immune infiltration 
analysis, gene set enrichment analysis (GSEA), and co-expression network analysis on the key genes. 
Results: The 154 immune cell-associated marker genes identified were mainly involved in pathways such as 
vacuolar cleavage, positive regulation of immune response and regulation of cell activation. Mendelian 
randomization analysis screened four pairs of marker genes (GZMH, COTL1, CSTA and CD14) were causally 
associated with COPD. These four key genes were significantly associated with immune cells. In addition, we 
have identified potential transcription factors associated with these key genes using the Cistrome database, 
thus contributing to a deeper understanding of the regulatory network of these gene expressions. 
Conclusions: This eQTLs Mendelian randomization study identified four key genes (GZMH, COTL1, CSTA, and 
CD14) causally associated with COPD, providing new insights for prevention and treatment of COPD. 
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emphysema. Continued progression of COPD leads  

to deterioration of the patient’s condition and  

a corresponding increase in healthcare costs and 

mortality [2]. However, to date, there is no satisfactory 

therapeutic regimen that can slow the progression of 

COPD or reduce mortality [3], and one important 

reason for this is that the underlying pathogenesis  

of COPD is complex. Consequently, identification  

of new markers is important for the prognosis and 

management for COPD patients. 

 

In patients with COPD, the exacerbation of lung tissue 

damage and subsequent lung remodeling due to 

persistent chronic inflammation is closely associated 

with an aberrant immune response. In this process, a 

variety of immune cells involved in both innate and 

adaptive immunity play important roles [4]. For 

example, macrophages and neutrophils in the alveoli 

could secrete a variety of proteases, cytokines, and 

chemokines thereby leading to destruction of the 

alveolar wall and thus exacerbation of emphysema  

[5, 6]. Adaptive immunity is a process that occurs 

when innate immunity is activated and involves  

the T-cell population responsible for early warning 

effects and the B-cell population that produces 

antibodies. Relevant studies have shown that fine 

bronchial damage and remodeling of alveolar tissue  

in lung tissue were associated with over-infiltration  

of CD4, CD8 and B cells [7]. In conclusion, the 

persistence of chronic inflammation influences the 

course of COPD and this inflammatory response is 

closely associated with an increase in a variety of 

immune cells [8]. 

 

With the development of bioinformatics technology, 

there are more possibilities to understand the 

mechanisms of disease progression. Traditional 

transcriptome sequencing measures the average 

expression of individual genes in a large population of 

cells and is primarily used to study differential 

expression between tissues [9]. It is therefore difficult 

to detect molecular differences that are only relevant 

to specific cell types, especially when gene expression 

is in low abundance in some specific cell types [10]. 

In recent years, technologies that can be used to assess 

the expression of gene profiles in individual cells 

(single-cell RNA sequencing) have been developed 

[11]. Single-cell RNA sequencing (scRNA-seq) is 

capable of assessing the amount of gene expression 

within a single cell, not only to detect rare or low 

abundance cell populations, but also to label previously 

unknown cell types or subtypes [12, 13]. In addition to 

this, scRNA-seq could help researchers to understand 
cell-to-cell information transfer, thus enabling the 

exploration of pathological mechanisms of diseases 

and the identification of new diagnostic markers or 

new therapeutic targets at the single-cell level [14– 

16]. For example, Li et al. noted in their study that 

scRNA-seq could be used to identify transcriptional 

changes and levels of individual proteins that may 

contribute to the development of emphysema in a  

cell-type specific manner [17]. Pei et al. demonstrated 

changes in immune cell subtypes during the progression 

of COPD by using peripheral blood mononuclear  

cells from patients with COPD for scRNA-seq [18]. 

However, the current types of scRNA-seq studies were 

mainly cross-sectional studies, which were designed 

to explore potential associations between genes and 

diseases rather than to establish causal relationships 

[19]. If the causal relationship between markers 

labeled by scRNA-seq and disease occurrence could 

be verified, it would not only save the cost of 

experiments but also provide a clearer direction for 

research. 

 

In order to explore the causal associations between 

risk factors and diseases, Mendelian randomization 

(MR) analysis has attracted the attention of researchers 

as a new epidemiological method [20]. MR analysis  

is based on the principle of random assignment of 

genetic variants, with single nucleotide polymorphisms 

(SNPs) as instrumental variables (Ivs) representing  

the characteristics of interest, which can be used to 

validate causality with diseases. Thus, the combination 

of MR analysis with scRNA-seq results may provide 

greater insight into the mechanisms of development  

of certain diseases. For example, Wu et al. identified 

in their study that risk genes for schizophrenia were 

highly expressed in specific neuronal cells and 

clarified the causal relationship [21]. Indeed, expression 

quantitative trait loci (eQTLs) in lung tissues have 

gained some degree of discovery in the pathogenesis 

of COPD [22, 23]. However, association analyses  

of eQTLs based on scRNA-seq results and precision 

locus analysis combined with genome-wide association 

study (GWAS) data were still limited. Therefore, we 

propose in this study to utilize GWAS data on COPD 

with the results of scRNA-seq for a comprehensive 

analysis, aiming to provide new insights into the 

pathogenesis of COPD. 

 

MATERIALS AND METHODS 
 

Data sources 
 

Exposure data  

The eQTLs data in this study were obtained from  

the eQTLGen Consortium (https://www.eqtlgen.org) 

database. The eQTL Gen Joint Research Program  
aims to analyze gene expression levels in peripheral 

blood and gain insight into the genetic basis of 

complex traits. More details about the eQTLGen 
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Consortium data can be found in a previous report 

[24]. 

 

Outcome data 

The GWAS data for those diagnosed with COPD come 

from UK Biobank. UK Biobank contains genetic  

and health information on over 500,000 participants  

of European descent. We selected an independent  

cohort (ID: ukb-b-16751) containing 3871 COPD 

patients and 459,139 controls. The outcome data are  

publicly available and more details can be found at 

https://gwas.mrcieu.ac.uk/datasets/ukb-b-16751/. 

 

RNA-sequencing data 

The GEO (Gene Expression Omnibus) data- 

base (https://www.ncbi.nlm.nih.gov/geo/) is a gene 

expression database established and maintained by the 

National Center for Biotechnology Information (NCBI). 

In this study, we obtained serial matrix data from  

this publicly available database containing lung tissue 

samples from COPD cases (GSE57148) annotated as 

GPL11154. Expression profiling data from a total of 

189 groups of patients were included, including 91 

controls and 98 COPD patients. In addition, we also 

obtained data from scRNA-seq of lung tissue samples 

from 3 COPD patients (GSE167295) for analysis. 

 

Gene set 

The gene set related to immunization in  

this study was obtained from the GeneCards 

(https://www.genecards.org) database. 

 

Analysis methods for single-cell sequencing 

 

Firstly, gene expression profiles of scRNA-seq samples 

were read using the Seurat package and screened for 

aberrantly expressed samples (nFeature_RNA > 100 

and percent.mt < 10). Subsequently, the resulting 

information was normalized with homogenization  

and subjected to principal component analysis. The 

optimal number of principal components (PCs) was 

observed by ElbowPlot curves (n=12), and the 

positional relationship between different clusters was 

subsequently investigated using the t-distributed 

stochastic neighbor embedding (TSNE) algorithm. To 

add annotations to the clusters, we used the annotation 

file HumanPrimaryCellAtlasData, which was included 

in the celldex package, to label each cluster as a  

cell type that is closely related to the formation of  

the disease. Finally, the labeled genes corresponding 

to each cell subtype were obtained by setting the 

thresholds of logfc and minimum pct to 1 and  

0.45, respectively, in the FindAllMarkers function. 
The unique marker genes associated with each cell 

subtype were screened using p_val_adj<0.05 and 

|avg_log2FC|>1.5 as conditions. 

Gene functional enrichment analysis 

 

Through the Metascape database (https://www. 

metascape.org), we have functionally annotated key 

genes in order to further explore their interrelationships. 

Based on this, we would conduct Genomics Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway studies. Minimum number of overlaps 

(Min overlap) greater than or equal to 3 and p-value  

less than or equal to 0.01 were judged to be statistically 

significant. 

 

Mendelian randomization analysis 

 

We performed a MR analysis using the MR Base data-

base and GWAS database (https://gwas.mrcieu.ac.uk/). 

The Mendelian randomization analysis in this study was 

performed on the basis of satisfying the assumptions 

of association, independence and exclusivity. In the 

association analysis, SNPs significantly associated 

with each locus first needed to be screened as variable 

instruments (P<10-8). Subsequently in linkage dis-

equilibrium (LD) analysis, we retained specific SNPs 

based on R2<0.001 (using a clustering window of 

10,000 kb) (P<5×10-8). Subsequently, we assessed the 

causal effect between genotype and disease using  

four statistical methods (inverse variance weighting, 

MR Egger, weighted median, and weighted mode). 

Specifically, inverse variance weighted (IVW) is 

designed to utilize the Wald value for each SNP in a 

pooled analysis. MR-Egger is able to assess whether 

genetic variation has multiple effects on the outcome 

that are on average non-zero (directional multiple 

effects), as well as to provide causal effects under  

the assumption of instrumental strength independent  

of direct effect (InSIDE) estimation. The weighted 

median model is able to correctly estimate causality in 

up to 50% of cases where the Ivs are invalid, and the 

Weighted mode approach has greater ability to detect 

causal effects because of smaller biases and lower type 

I error rates. By evaluating each SNP, we would  

be able to further screen and validate whether there is 

a true causal relationship among them. We analyzed 

each SNP in the screened causal relationships by 

independent assessment using Wald ratio to screen and 

validate the results. Finally, we used the leave-one-out 

analysis to verify the independence of the screened 

causal relationships. 

 

Co-location analysis 

 

We performed co-localization analyses using the coloc 

algorithm on eQTL summary data and GWAS data 
from COPD. The 100-kilobase region around the index 

SNP was used to calculate the posterior probability.  

In the results, H3 indicated the posterior probability  
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that two traits were correlated but had different causal 

variants; H4 indicated the posterior probability that two 

traits were correlated and shared a single causal variant. 

 

Analysis of immune cell infiltration 

 

To assess the relative proportion of 22 types of immune 

infiltrating cells, we employed the CIBERSORT 

algorithm to analyze RNA-seq data from different  

sub-groups of COPD patients. Subsequently, we 

evaluated the correlation between gene expression 

levels and immune cell content using Spearman 

correlation analysis. P-value less than 0.05 was 

considered statistically significant. 

 

Gene set enrichment analysis 

 

To identify genes whose gene expression profiles 

differed between the high- and low-expression groups 

in COPD patients, we performed gene set enrichment 

analysis (GSEA; http://www.broadinstitute.org/gsea). 

The numbers of maximum and minimum gene sets 

were set as 500 and 15 as filtering conditions, 

respectively. The selected gene sets were ranked 100 

times and the final results were obtained based on  

a P-value of <0.05 and a false discovery rate (FDR) 

value of 0.25 [25]. 

 

Regulatory network of target genes 

 

Cistrome DB is currently a more comprehensive 

database for studying ChIP-seq and DNase-seq, 

encompassing a total of 30,451 human and 26,013 

mouse samples of transcription factors, histone 

modifications, and chromatin. In this study, we probed 

the regulatory relationships between transcription 

factors and target genes through the Cistrome DB 

database, with the genome file set to hg38 and the 

transcription start site set to 10kb, all visualized via 

Cytoscape. 

 
Statistical analysis 

 
All data analyses were conducted in R version 4.0.  

MR analysis follows three fundamental assumptions: 

[1] the correlation assumption, stating that the 

instrumental variable is closely related to the exposure 

factor, but not to the outcome; [2] the independence 

assumption, meaning that the instrumental variable 

and the confounder have no relationship; and [3]  

the exclusion assumption, stating that the instrumental 

variable only affects the outcome through the exposure 

factor. If the instrumental variable affects the outcome 

through other pathways, it is considered to be genetic 

pleiotropy. A significance threshold of P<0.05 was set 

for statistical differences. 

Data availability statement 

 

The original contribution to the study was included in 

the article/supplementary material. For further inquiries, 

please contact the corresponding author. 

 

RESULTS 
 

Preprocessing results of single-cell sequencing data 

expression profiles 

 

This study includes the results of scRNA-seq of lung 

tissue from 3 patients with COPD. To proceed with  

the subsequent analysis, we only retained cells with 

nFeature_RNA greater than 100 and percent.mt less 

than 10. A total of 13,838 cells with expression  

levels of features were included for further analysis 

(Supplementary Figure 1A, 1B). We displayed the 

gene expression patterns across samples and marked 

the top 5 genes with the highest standardized variance 

(Supplementary Figure 1C). 

 

Single-cell sample subtype clustering analysis 

 

We utilized Principal Component Analysis (PCA) in 

order to reduce the dimensionality of the differential 

genes. The results suggested that the 20 genes that were 

presented scored differently on different dimensions. 

(Supplementary Figure 2A). However, when we 

analyzed the PCA dimensionality reduction among 

samples, we found that the overall difference was  

not significant (Supplementary Figure 2B). Through 

observing the ElbowPlot, we found that the optimal  

pc number was 12 (Supplementary Figure 2C, 2D), 

and finally obtained 18 cell subtypes through TSNE 

method (Supplementary Figure 2E). 

 

Annotation of cluster subtypes 

 

We used HumanPrimaryCellAtlasData as an annotation 

dataset and used the SingleR software package to 

annotate each cell subtype. The 18 clusters were 

annotated to B-cell, Endothelial cells, Epithelial cells, 

Macrophage, Monocyte, NK cell, T-cells, and Tissue 

stem cells (Supplementary Figure 2F, 2G). Finally, we 

extracted a total of 411 marker genes for cell subtypes 

from the single-cell expression profiles using the 

FindAllMarkers function (Supplementary Table 1). 

 

Marker gene function analysis 

 

In the functional analysis of marker genes, we  

first compared genetic differences between cell 

subtypes associated with the immune system (B_cells, 

macrophages, monocytes, NK_cells, and T_cells) and 

identified 154 marker genes (Figure 1A–1E). To further 
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explore the functions of these marker genes, we utilized 

the Metascape database to conduct a pathway analysis. 

The results of this analysis suggested that these marker 

genes were primarily enriched in pathways related to 

the lytic vacuole, the positive regulation of immune 

response, and the regulation of cell activation (Figure 

1F). Additionally, we utilized Cytoscape software to 

visualize the protein interaction network of the gene sets 

(Figure 1G). 

 

Mendelian randomization analysis of marker genes 

 

We performed a Mendelian randomization analysis of 

marker genes to further identify key genes marked by 

marker genes that would have an impact on COPD. 

Using the COPD meta-analysis summary statistics  

(id: ukb-b-16751 with 459,139 controls and 3,871 

cases), we extracted 120 pairs of marker genes causally 

associated with COPD (Supplementary Table 2). 

Subsequently, by MR analysis, we screened 4 pairs of 

marker genes that were causally associated with 

positive eQTL results (Figure 2A–2D, p-value of IVW 

less than 0.05). These 4 pairs of marker genes were 

GZMH, COTL1, CSTA, and CD14. The effect values 

corresponding to these 4 pairs of marker genes were 

COTL1 (OR= 0.997 ; 95% CI: 0.996 - 0.999; P = 

0.005), GZMH (OR= 0.999; 95% CI: 0. 997-0.99995; P 

= 0.043), CSTA (OR= 1.001; 95% CI: 1.000-1.002; P = 

0.032), and CD14 (OR= 1.001; 95% CI: 1.000-1.002; P 

= 0.011), as described in more details in Supplementary 

Table 3. These results suggest that CSTA and CD14 

could be high-risk factors for COPD; while COTL1 and 

GZMH might be low-risk factors for COPD. In 

addition, we performed sensitivity analysis to determine 

the reliability of the causality for the four genes. The 

results showed that the exclusion of any of the SNPs 

had a small effect on the overall error, suggesting  

that the selected 4 pairs of key genes have a robust 

causal association with COPD (Figure 3). Finally,  

we performed co-localization analysis of these four 

genes at the eQI-GWAS level (Figure 4). We found  

that COTL1 was associated with COPD and shared 

genetic loci with single mutations (Figure 4B and 

Supplementary Table 4). 

 

Clinical predictive value for key genes 

 

The microenvironment is mainly composed of immune 

cells, extracellular matrix, various growth factors, 

inflammatory factors, and special physicochemical 

features, etc. The microenvironment significantly 

influences the diagnosis of the disease, survival 

outcome, and sensitivity of clinical treatment. By 

analyzing the relationship between gene expression 

levels and immune infiltration, the potential molecular 

mechanisms by which the expression levels of  

key genes influence the development of COPD can  

be further explored. Our results showed that the 

distribution of immune levels of different immune 

factors in the samples was not entirely consistent 

 

 
 

Figure 1. Differential gene expression and functional analysis of immune-related cell subtypes in COPD samples. (A–E) Volcano 

plots of the differential genes of the five immune cells, B_cell, Macrophage, Monocyte, NK_cell, and T_cells, respectively, in COPD samples, 
according to the order. (F) Functional enrichment analysis of the differential genes. (G) Differential gene protein-protein interactions 
network. 
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(Figure 5A). There were several significant correlations 

among the immune factors (Figure 5B). monocytes, 

Dendritic cells activated, etc. were significantly higher 

in COPD samples than in control samples, while  

T cells follicular helper, Macrophages M2, etc. were 

significantly lower than in control samples (Figure 5C). 

The gene GZMH was significantly positively correlated 

with T cells CD8, NK cells resting, etc., and 

significantly negatively correlated with B cells naive, 

Macrophages M2; the gene COTL1 was significantly 

 

 
 

Figure 2. Mendelian randomization analysis between key genes and COPD. (A–D) Genes represented were CD14, CSTA, COTL1, and 
GZMH, respectively. Different colors indicated different statistical methods, and the slopes of the lines denoted the causal effect of each 
method, respectively. 
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positively correlated with Macrophages M2, Dendritic 

cells resting, etc., and significantly positively correlated 

with T cells CD4 memory resting, Dendritic cells 

activated, etc.; gene CSTA is significantly positively 

correlated with Monocytes, Macrophages M0, etc., and 

negatively correlated with Plasma cells, NK cells 

activated, etc.; gene CD14 is significantly correlated 

with Mast cells activated, Neutrophils significantly 

positively correlated, and significantly negatively 

correlated with Plasma cells, Mast cells resting (Figure 

5D). We obtained the correlations between these  

key genes and different immune factors, including 

immunomodulators, chemokines and cellular receptors 

from the TISIDB database, and the results showed that 

the key genes were significantly correlated with several 

immune factors (Figure 6). 

 

Disease gene expression levels 

 

We obtained the disease genes associated with  

COPD through the GeneCards database (https://www. 

genecards.org/), and we analyzed the expression levels 

of four key genes (Figure 7A–7C) and the expression 

levels of the top 20 genes with the highest relevance 

score. We found that the expression levels of key genes 

were significantly correlated with the expression levels 

of several disease-related genes, including CD14, which 

was significantly positively correlated with HMOX1 

(correlation coefficient=0.646), and COTL1, which was 

significantly negatively correlated with SCGB1A1 

(cor=-0.351) (Figure 7D). Subsequently, we analyzed 

the expression of these four key genes and the top 10 

immune genes with the highest relevance score at the 

single-cell level, and we found that the key genes were 

co-expressed with several immune genes at the single-

cell level (Supplementary Figures 3–6). 

 

Potential signaling mechanisms and regulatory 

networks for key genes 

 

We performed an in-depth enrichment analysis of four 

key genes to explore the relevant signaling pathways 

by which they may influence disease progression.  

For example, we found that the main pathways for 

gene ontology (GO) enrichment of GZMH gene were 

“LEUKOCYTE MEDIATED CYTOTOXICITY, 

NEGATIVE REGULATION OF CALCIUM ION 

TRANSPORT INTO CYTOSOL, etc” and the 

pathways for KEGG enrichment mainly included 

“ALANINE ASPARTATE AND GLUTAMATE 

METABOLISM, ANTIGEN PROCESSING AND 

PRESENTATION, etc”. The enrichment results for all 

four key genes were shown in Figure 8. Subsequently, 

we compiled these four key genes into a gene set for 

this analysis to further investigate the transcriptional 

regulatory networks encompassing these genes. Using 

the Cistrome DB online database, we identified the 

transcription factors associated with the key genes.

 

 
 

Figure 3. Forest plot of key genes corresponding to SNPs tested by leave-one-out analysis. (A–D) Respectively represented by the 

genes CD14, COTL1, CSTA and GZMH. 
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Specifically, 86 transcription factors were predicted to be 

associated with CD14, 93 with COTL1, 54 with CSTA, 

and 94 with GZMH. Finally, we employed Cytoscape 

software to visualize the transcriptional regulatory 

networks of COPD-related key genes (Figure 9). 
 

DISCUSSION 
 

Although smoking is widely recognized as a key factor 

in the development of COPD, a puzzling phenomenon 

is that the disease may continue to progress even  

when COPD patients successfully quit smoking. This 

phenomenon has prompted researchers to delve deeper 

into the genetic factors of COPD. Currently, more  

and more researchers tend to regard COPD as a  

disease with a genetic basis. Recent breakthroughs in 

genomic research worldwide have led to the discovery 

of numerous genes associated with the development  

of COPD, providing new clues to the pathogenesis  

of the disease [26–28]. Various GWAS studies have  

also suggested that the pathogenesis of COPD is not 

caused by a single genetic variant, but rather by a 

disruption in the balance of the biological network 

consisting of genes and proteins, leading to intricate 

changes in the pathological processes of the disease. The  

exploration of the pathogenesis of COPD through genetic  

 

 
 

Figure 4. Co-localization analysis between SNPs of key genes and GWAS data from COPD patients. The genes represented 

from (A–D) were CD14, COTL1, CSTA, and GZMH, respectively. The X-axis indicated the P-value of GWAS, and the Y-axis indicated the P-
value of eqtl. 
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Figure 5. Analysis of immune cell infiltration in COPD samples. (A) Relative percentages of immune cell subpopulations.  
(B) Correlation between immune cell subpopulations, where red represents positive correlation and blue represents negative correlation.  
(C) Differences in immune cell content between COPD and control samples. (D) Correlation between 4 key genes and immune cells. Where 
red represents a positive correlation and blue represents a negative correlation, the larger black solid circle represents a more statistically 
significant difference. 

 

 
 

Figure 6. Correlation between key genes and Immunoinhibitor (A), Chemokine (B), MHC (C), Immunostimulator (D) and Receptor related 
immunogenes (E). 
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technology holds immense clinical significance. 

However, with the development of gene sequencing 

technology, it has been recognized that the regulation of 

numerous genes is specific to certain cells. Previous 

sequencing results based on a wide range of tissues may 

have resulted in the omission of information regarding 

expression quantitative trait loci (eQTLs) specific to 

certain cell subtypes [21]. Therefore, the utilization of 

scRNA-seq technology has become invaluable in the 

search for crucial COPD genes. 

 

In our results, we identified 8 cell subtypes, 5 of which 

were immunologically related. The immunological profile 

of COPD during its progression remains unclear, so 

further studies of immune cell infiltration in COPD are 

still needed. The immune inflammation associated with 

COPD is at the heart of the disease, which is one of the 

reasons why current treatments have failed to stop the 

progression of the disease and the continued damage  

to lung tissue [29]. Previous studies have shown that  

the effector molecule functions of neutrophils and 

macrophages involved in chronic inflammation in COPD 

are suppressed [30, 31]. In addition, it has been shown 

that neutrophils and lymphocytes can have a synergistic 

effect to enhance migration toward chemokine receptor 3 

(CXCR3) and chemokine ligand 5 (CCL5), leading to 

immune infiltration of macrophages and T cells in the 

lungs of COPD patients [32]. Our study showed that  

key genes of immune-related cell subtypes were mainly 

enriched in the positive regulation of inflammatory 

response and cell activation, which is consistent with the 

above findings [33]. 

 

Most importantly, our study identified four key 

immune-related genes based on COPD patients. GZMH, 

also known as granzyme H, is a member of the serine 

protease family [34]. Granzyme H is expressed in 

immune cells (mainly cytotoxic T cells and natural 

killer cells) and promotes the release of inflammatory 

cytokines and cytolytic proteins from effective immune 

cells thereby inducing apoptosis in target cells [34,  

35]. Since an important feature of COPD is the 

excessive deposition and remodeling of the extracellular 

matrix (ECM) around small airways and can provide 

mechanical pathways for the infiltration and migration 

of harmful immune cells [29]. Previous studies have 

shown that expression of granzyme’s B can contribute 

to the degradation and remodeling of the ECM in  

the extracellular environment, thereby promoting the 

development of an emphysema phenotype [36]. A 

positive correlation between GZMH and inflammation 

was indirectly demonstrated in a clinical randomized 

controlled trial suggesting that the downregulation of 

the GZMH gene was more pronounced in COPD 

patients treated with oral prednisone than in other 

family members [37]. In summary, a limited number  

of studies have been reported explaining that high 

expression of the granzyme family in COPD is highly 

correlated with the severity of the disease. However, it 

has also been shown that GZMH levels are reduced in 

 

 
 

Figure 7. Expression of key genes in single cells. (A–C) Expression of key genes and disease-causing genes in cells. (D) The upper panel 

represented differences in the expression of disease-regulated genes, with control patients in blue and disease patients in yellow. The lower 
panel represented the pearson correlation analysis between key genes and disease genes. Blue color represents negative correlation and red 
color represents positive correlation. 
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Figure 8. GSEA analysis of key genes. (A–D) GO and KEGG signaling pathways involved in different key genes. 

 

 
 

Figure 9. Transcriptional regulatory networks of key genes. Purple indicates mRNAs and orange indicates transcription factors. 
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patients with moderate and/or severe severity when 

combined with acute neocoronary pneumonia (COVID) 

in patients with co-morbidities, even at high levels  

of inflammation [38]. Our findings suggested that 

GZMH expression may be associated with a lower risk 

of developing COPD. The new puzzling question is 

whether GZMH expression is harmful or beneficial? Or 

does it play different roles at different stages of COPD? 

Therefore, more subsequent studies are necessary. 

 
In our study, we found that another gene associated with 

a low risk of developing COPD is COTL1. COTL1  

is one of the proteins that encodes for the regulation of 

the actin cytoskeleton, which acts mainly through the 

innate immune pathway [39]. In our study, COTL1 was 

strongly positively associated with dendritic cells as well 

as macrophages, which is similar to previous findings. 

Studies on COTL1 and immune cell infiltration in COPD 

samples are still unknown. COTL1 has been reported 

mainly in tumor samples. In a study on breast cancer, 

investigators demonstrated that COTL1 was highly 

expressed in tumor tissues and positively correlated 

with dendritic cells and M2 macrophages [40]. The 

influence of innate immunity in the COPD process is 

complex, with multiple types of macrophages being 

closely associated with pro-inflammatory responses 

[41], but M2 macrophages are also associated with 

inflammatory abatement, tissue repair, and reduction  

of pro-inflammatory cytokines [42]. Also not to be 

overlooked is the role of dendritic cells as the first 

barrier in the face of pathogenic microorganisms [43]. 

 
Our study demonstrated 2 key genes associated  

with a high risk of developing COPD, including  

CSTA and CD14. CSTA, also known as cystatin A,  

has cysteine protease inhibitory effects [44]. Butler 

demonstrated in their study that patients with smoking 

and COPD have increased levels of CSTA expression 

and a dose-responsive relationship with the severity  

of the disease [45]. Although there is still no relevant 

study explaining whether the high expression of  

CSTA gene in COPD patients is associated with the 

infiltration of immune cells, earlier researchers have 

demonstrated that the local proliferation of cystatin  

A-producing epidermal cells is associated with a high 

degree of infiltration of monocytes and granulocytes in 

inflammatory diseases [46]. CD14 is a co-receptor of 

the Toll-like Receptor (TLR)-4 in the innate immune 

response and plays a crucial role in its ability to 

recognize lipopolysaccharide, pathogens and damage-

associated molecular patterns on bacterial surfaces 

thereby promoting an immune-inflammatory response 

[47]. In a study by Dewhurst, lung tissues from COPD 
patients were labeled for macrophage subpopulations. 

The results showed more infiltration of abnormally 

sized macrophages in the lung tissue of COPD patients 

compared to normal lung tissue and confirmed the high 

expression of the CD14 gene [48]. 

 

Finally, there are several limitations of our study. First, 

based on two datasets obtained from the GEO database, 

we obtained gene expression profiles of COPD patients. 

However, all participants tested were male, and the 

COPD group had a greater age and number of years  

of smoking [49]. Although Mendelian randomization 

analysis can be effective in reducing this potential bias, 

our findings need to be treated with caution in non-

smoking or female COPD patients. Second, although 

the dataset we utilized for single-cell sequencing was 

able to satisfy the cell sample size used for the analysis 

[50], there are still limitations in the population sample 

size. This leads to the possibility of a mismatch in general 

characteristics in COPD compared to controls [17]. In 

conclusion, although we identified associations between 

four key genes and disease genes using Mendelian 

randomization analysis and explored potential signaling 

mechanisms, whether these disease genes or signaling 

mechanisms exist independently or ultimately have an 

impact on the development of COPD through complex 

combinations still requires further confirmation. 

 

CONCLUSIONS 
 

In this study, we identified marker genes and major 

pathways that could be enriched for immune cell 

subtypes associated with COPD by analyzing scRNA-

seq data. Based on Mendelian randomization analysis  

of eQTLs and GWAS data, the screened genes GZMH, 

COTL1, CSTA, and CD14 provided evidence for a 

causal effect on the development of COPD. The 

association of these four key genes with COPD-causing 

genes and the potential informational pathways enriched 

by these genes could provide additional information on 

the development of COPD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Analysis of single-cell sequencing results from COPD patients. (A) Quality inspection of single-cell 

sequencing. Plots from left to right showed the number of cells, the number of genes and the sequencing depth for each sample, 
respectively. (B) Plots from left to right showed the relationship between single-cell sequencing depth and mitochondrial content (correlation 
coefficient of 0.18) and the number of genes (correlation coefficient of 0.92), respectively. (C) Genes that differed between cells, and the 5 
genes with the highest standardized variance were flagged. 
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Supplementary Figure 2. Annotation of cellular subtypes of single-cell samples. (A) Heatmap of principal component analysis for 

genes from single-cell sequencing in COPD samples. (B) Distribution of PCs in COPD single-cell sequencing samples, where dots represent 
cells and different colors represent different samples. (C) Histogram of PCA results of COPD single-cell sequencing samples to show the P-
value for each PC. (D) Variogram of each PC in COPD single-cell sequencing samples. (E) Cluster analysis of COPD single-cell sequencing 
samples. (F) Annotation of cell subtypes in COPD single-cell sequencing samples. (G) Difference in the percentage of cells in COPD samples 
that were annotated. 
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Supplementary Figure 3. Co-expression analysis of CD14 with immune genes in single-cell sequencing samples. Scatter plots 

represent pearson correlation analysis between co-expressed genes.  
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Supplementary Figure 4. Co-expression analysis of COTL1 with immune genes in single-cell sequencing samples. Scatter plots 
indicate the pearson correlation analysis between co-expressed genes.  
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Supplementary Figure 5. Co-expression analysis of CSTA with immune genes in single-cell sequencing samples. Scatter plots 

indicate the pearson correlation analysis between co-expressed genes.  
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Supplementary Figure 6. Co-expression analysis of GZMH with immune genes in single-cell sequencing samples. Scatter plots 
indicate the pearson correlation analysis between co-expressed genes.  
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

 

Supplementary Table 1. 411 cellular subtype marker genes extracted from single-cell expression profiles. 

 

Supplementary Table 2. 120 pairs of marker genes causally associated with COPD. 

 

Supplementary Table 3. Results of Mendelian randomization analysis of four key marker genes associated with 
COPD. 

 

Supplementary Table 4. Results of co-localization analysis of four genes at the eQI-GWAS level. 
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