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INTRODUCTION 
 

Breast cancer (BC) is the leading cause of tumor-

associated death in females worldwide and one of the 

most common malignancies. It is a highly heterogeneous 

disease, exhibiting various characteristics across different 
individuals. Owing to difficulties in early diagnosis and 

the aggressive nature of tumor progression, a significant 

number of BC patients are often diagnosed at an 

advanced stage or with metastatic lesions [1]. As a result 

of early detection and treatment, 5-year relative survival 

rate was almost 100% for BC patients diagnosed 

primarily in stage I, compared to only 26% for BC 

patients initially diagnosed in stage IV [2]. According to 

PAM50, BC has five subtypes (i.e., luminal A, luminal 

B, Her2-enriched, normal-like, and basal-like) [3]. 
However, it has been observed that patients with the 

same molecular type and similar clinical characteristics 

can exhibit different prognoses and responses to chemo-

therapy or immunotherapy [4], suggesting other subtle 
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ABSTRACT 
 

The discovery of RNA methylation alterations associated with cancer holds promise for their utilization as 
potential biomarkers in cancer diagnosis, prognosis, and prediction. RNA methylation has been found to impact 
the immunological microenvironment of tumors, but the specific role of methylation-related genes (MRGs), 
particularly in breast cancer (BC), the most common cancer among women globally, within the tumor 
microenvironment remains unknown. In this study, we obtained data from TCGA and GEO databases to 
investigate the expression patterns of MRGs in both genomic and transcriptional domains in BC. By analyzing 
the data, we identified two distinct genetic groupings that were correlated with clinicopathological 
characteristics, prognosis, degree of TME cell infiltration, and other abnormalities in MRGs among patients. 
Subsequently, an MRG model was developed to predict overall survival (OS) and its accuracy was evaluated in 
BC patients. Additionally, a highly precise nomogram was created to enhance the practical usability of the MRG 
model. In low-risk groups, we observed lower TBM values and higher TIDE scores. We further explored how 
MRGs influence a patient’s prognosis, clinically significant characteristics, response to therapy, and the TME. 
These risk signatures have the potential to improve treatment strategies for BC patients and could be applied in 
future clinical settings. Moreover, they may also be utilized to determine prognosis and biological features in 
these patients. 
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factors affecting their prognosis and treatment outcome. 

Prognosis in BC patients can always be improved with an 

accurate diagnosis, detection, and treatment [5]. Hence, 

to enhance the prognosis and treatment of BC patients,  

it is essential to investigate new effective biomarkers and 

therapy modalities. The post-transcriptional modifications 

have attracted much attention in BC research because its 

important role in BC biology [2].  

 

Messenger RNA (mRNA) and non-coding RNA are  

post-transcriptional modifications [6]. To date, numerous 

studies have identified more than 170 RNA modifications 

[7]. RNA modification disorders have been linked  

to a wide range of diseases, including BC [8]. Post-

transcriptional alterations include N6-methyladenosine 

(m6A), 5-methylcytosine (m5C) and N1-methyladenosine 

(m1A), which affect adenosine in various ways [6]. m6A is 

the most common variation in mRNA, initially found in 

the 1970s [9]. It has been described to be a changeable, 

normal adenosine alteration, particularly abundant in 

mammalian mRNA 3 ’UTR [10]. In addition, m6A  

has been found to be associated with various cellular 

processes such as RNA stabilization, metabolism, 

transcriptional control, and intracellular signaling. Its 

biological significance can be seen in several contexts, 

including embryonic self-renewal, the development of 

hematopoietic stem/progenitor cells, circadian rhythm 

regulation, heat shock response, neurofunction, and 

cancer. These examples highlight the diverse roles that 

m6A plays in essential biological processes [8]. m5C  

is a common human RNA mutation found in both 

mRNAs and ncRNAs [11]. So far, the human genome has 

been revealed to have overall m5C sites. This reversible 

post-transcriptional modification affects many molecular 

processes, including RNA-protein interactions, RNA 

stability, and translation efficiency [8]. It follows orders 

by “author” (methyltransferase), “reader” and “eraser” 

(demethylase). According to a recent study, NSUN6 

mediates location-specific deposition of m5C in mRNA to 

regulate translation quality [12]. It is known that the m5C 

modification can be transformed into various kinds of 

alterations, such as hm5C, although the m5C demethylase 

is unclear [13]. In recent years, abnormal m5C has been 

discovered to be carcinogenic in several malignancies [8]. 

Preliminary results of m1A were available more than 50 

years ago. Adenosine becomes m1A when a methyl group 

joins the N1 site. The Watson-Crick base pair interface is 

the location of the methyl group, disrupting the base pair, 

while the positive charge carried by m1A affects local 

RNA structure or protein-RNA interactions [10]. M1A is 

also found to be a highly enrichment effect for 5 ’UTR 

translation [14]. Based on earlier studies, M1A was found 

in tRNA, mitochondrial transcripts, as well as rRNA and 
mRNA [15]; In eukaryotes, m1A is abundant in tRNA and 

rRNA. Furthermore, recent studies have revealed that 

m1A alteration may be impacts mRNA translation [16].  

Cancer-related RNA methylation alterations have been 

recognized as a promising alternative for developing 

biomarkers that can be used in prediction, prognosis, and 

diagnosis. Discoveries of methylation associated with 

antitumor immunity are promising [17]. Methylation, 

like necrosis, is an important cellular response that 

regulates cancer progression, spread, and metastasis [6]. 

However, the mechanism that methylation modulators 

affect the prognosis, and the underlying molecular 

pathways of BC is not well understood. methylation 

landscapes help predict BC prognosis, and in recent 

years STOX1, UNKL, ZMAT3, and ZNF443 have all 

been identified as novel biomarkers of BC metastasis 

with strong methylation deregulation and association 

with metastasis [18]. Although methylation is critical 

for both oncogenic and anticancer pathways, few 

studies have addressed the significance of methylation 

in cancer, particularly in BC. 

 

Cancer immunotherapy uses anti-tumor immune 

responses to identify and destroy tumor cells by 

stimulating the host immune system [19]. T cell- 

related immune responses only partially benefit a  

small percentage of cancer patients. Although T cells 

contribute to immune checkpoint inhibitors, they  

also stimulate anti-cancer responses [20, 21]. BC  

is known to be an immunologically dormant tumor, 

which slows obviously its response to immunotherapy. 

Encouraging preclinical trial results, along with years  

of clinical data, suggest that immunotherapies may  

hold the key to ushering breast cancer into an era  

of clinical intervention that has yet to be experienced 

[22]. Furthermore, there is growing evidence that 

immune infiltration in the tumor microenvironment 

(TME) plays an important role in determining BC 

progression. According to a large number of studies,  

the prognosis of patients with triple-negative BC was 

related to the quantity of T cells obviously in the  

tumor [23]. For this reason, the method we got from 

immune cell infiltration (ICI) profiles—clustering of 

BC samples relied on molecularly specific subgroups 

related to the ICI patterns—may be the most reliable and 

promising way to thoroughly assess tumor sensitivity to 

immunotherapy. It also facilitates personalized treatments 

to increase their effectiveness. But the investigation did 

not think over the incomplete context of BC’s TME, 

because it was mediated by ICI patterns. 

 

With the rapid advancement of science, our research  

on cancer treatment, prognostic biomarkers, and the 

carcinogenic framework will continue to progress.  

We aim to investigate the prognostic significance, 

expression, and presentation of the regulatory axis  
of MRGs in BC. Our findings have the potential to  

offer further insights into the molecular mechanisms 

and prognostic biomarkers associated with BC. 
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MATERIALS AND METHODS 
 

Data sources 

 

Clinicopathological information and RNA-seq data  

on BC were collected from The Cancer Genome  

Atlas (TCGA; https://portal.gdc.cancer.gov/) and Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm. 

nih.gov/geo/) databases. The expression profiles of 

mRNA were acquired from the Ensembl database 

(http://asia.ensembl.org) following the addition of GTF 

file-based annotations. We included 1001 BC patients 

from TCGA-BRCA in our subsequent analysis because 

we removed data from individuals with incomplete or 

less than 30 days of overall survival (OS) information. 

The 88 BC patients from GSE20711 were used as a 

dataset for external validation. The clinical information 

of breast cancer patients was shown in Supplementary 

Table 5. 

 

Consensus clustering analysis of MRGs  

 

Supplementary Table 2 contains information for these 

57 MRGs. Using the R package “Consensus Cluster 

Plus,” consensus unsupervised clustering analysis was 

carried out to group patients into various molecular 

subtypes based on MRG expression. The following 

criteria were used to classify these items: the cumulative 

distribution function curve first developed smoothly and 

steadily. Second, no group had a sample size that was 

too small. Thirdly, despite a drop in the inter-group 

correlation, the intra-group correlation rose.  

 

Correlation between molecular subtypes with the 

clinical features and prognosis of BC 

 

Kaplan-Meier curves were used to compare OS  

among the two MRG clusters, which was generated  

by the “survival” and “survminer” R programs. The two 

different MRG clusters showed a significant difference in 

the MRG transcriptional profile. Patients with decreased 

MRG cluster revealed significant therapeutic advantages 

and clinical benefits. In addition, we evaluated the 

association between genetic subtypes, clinicopathological 

traits, and prognosis to explore the clinical utility of the 

two clusters through consensus clustering. HER2, PR, 

ER, age, gender, tumour site, TNM stage, subtypes, and 

clinical stage were patient characteristics.  

 

Relationship of molecular subtypes with TME and 

evaluation of the immune status 

 

Gene set variation analysis (GSVA) was utilized to 

examine the changes in MRGs in biological processes. 

The single sample gene set enrichment analysis was 

used to assess the infiltration of distinct immune cells 

(ssGSEA) [24]. Using the R package “clusterprofiler,” 

we conduct functional enrichment analysis on the 

differentially expressed genes (DEGs), allowing us to 

more completely investigate the hidden functions of the 

methylation clusters DEGs and discern the enriched 

pathways as well as gene functions that go along with 

them.  

 

Construction of the prognostic risk model 

 

First, univariate Cox regression analysis was applied  

to DEG. Next, patients were categorized into different 

subtypes (gene cluster A, B and C) utilizing the 

prognostic DEGs for unsupervised clustering. To create 

a predictive model, we randomly created training and 

testing sets at a ratio of 0.7:0.3. LASSO Cox regression 

analysis was simply applied to prognostic DRGs to 

reduce the likelihood of overfitting. We use risk  

score = Σ (expi * coefi) to determine the risk score, 

(expi and coefi stand for each gene’s expression and 

risk coefficient). Using the median risk score, we 

classified patients into high-risk and low-risk groups. 

We also assessed differences in risk scores for MRG 

clusters and gene clusters. Risk score accuracy was 

assessed applying Kaplan-Meier analysis and receiver 

operating characteristic (ROC) curves. Using the “rms” 

program and the outcomes of the independent prognosis 

analysis, the clinical characteristics and risk score were 

combined to create a prediction nomogram.  

 
Mutation, immunotherapy response, and drug 

susceptibility analysis 

 

Infiltrating immune cells were assessed for high- and 

low-risk groups using CIBERSORT. The 22 immune 

cells’ relationships with the risk score and the genes in 

the model are examined. The TCGA database generates 

a mutation annotation format in order to identify 

somatic mutations in several BC sample groupings. To 

evaluate the tumor component in each sample, we 

computed the tumor purity, stromal, immunological, and 

CIBERSORT scores using the CIBERSORT algorithm. 

We determine the TBM score for each BC patient 

across all categories. We investigated the connections 

between various social groups and TIDE. We generated 

the usage semi-inhibitory concentration (IC50) values 

of a pRRophetic package of anti-tumor pharmaceuticals 

for BC to examine the differences in the therapeutic 

effects of regularly used anti-tumor medications between 

the two groups. 

 
Cell culture and infection 

 

BC cells MDA-MB-231 and MCF7 were provided  

by Dr. Chen and cultured under 5% CO2. After 

overnight incubation, the cells were transfected with 
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small interfering RNA (siRNA) using lipo2000 

(Invitrogen, USA) or Lipofectamine RNAiMax 

transfection reagent (Invitrogen), according to the 

manufacturer’s instructions. The targeting siRNA was 

synthesized by Genepharma (Shanghai, China) and 

RiboBio (Guangzhou, China). The transfected cells were 

identified by quantitative real-time PCR (qRT-PCR), 

using the primer sequences provided in Additional File 

1 and Supplementary Table 1. 

 

Apoptosis detection 

 

Assessment of cell apoptosis was carried out using flow 

cytometry. For this purpose, cells were first harvested 

prior to their resuspension in 100 μl of 1 x binding 

buffer. This was followed by the addition of 5 μl  

of fluorescein isothiocyanate (FITC), annexin V and 

propidium iodide (PI) (556,547; BD Biosciences, USA), 

with the cell suspension subsequently incubated for 

15 min at room temperature. Eventually, the samples 

were attenuated with 400 ul of 1 x binding buffer prior 

to analysis with an ACS Calibur flow cytometer. 

 

Immunohistochemistry 

 

59 pairs of breast cancer tissues were retrieved  

from Department of Pathology, the Second Affiliated 

Hospital of Harbin Medical University from March to 

June 2014. The study was approved by the Institutional 

Review Board of our hospital (No. KY2024-001). And 

all patients signed informed consent forms.  

 

IHC was performed based on streptavidin and 

peroxidase method. Staining scores were shown as 

mean optical density (MOD), which was assessed by 

the software image-Pro Plus 6.0 Image. And the 

cytoplasmic staining of ZMAT3 (1:500; 10504-1-AP; 

Thermo Fisher Scientific, USA) was indicated as 

positive. Based on the value of MOD, the clinical 

features of breast cancer patients were analyzed.  

 
Statistics 

 
The data processing in our investigation was handled by 

R and GraphPad software. The Wilcoxon test was used 

to compare and analyze the characteristics of the two 

groups, and Kruskal-Wallis test was used to compare 

and analyze the profiles of more than two groups. The R 

script was shown in Supplementary File 1. 

 

Data availability statement  

 

The datasets presented in this study can be found in 

online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article/Supplementary Material. 

RESULTS 
 
Genetic and transcriptional alterations of MRGs in 

BC 

 
Significant differences in the expression levels and 

genetic make-up of MRGs were found between the  

BC and control samples, indicating that MRGs may 

have diverse functions in the initiation and progression 

of BC carcinogenesis. The 57 MRGs’ somatic copy 

number variation was the next area of investigation. 

Most CNV modifications were concentrated on the 

amplificated copy number, but RBM15B, ALKBH1, 

ZC3H13, RBM15, and WTAP, which had a high 

frequency of CNV deletion, according to the analysis of 

CNV modification frequency (Figure 1A). MRGs with 

CNV gain were expressed at higher levels, ALYREF, 

VIRMA, IGF2BP1, YTHDF1, and others showed 

considerably higher expression in BC tissues compared 

to normal tissues (Figure 1B). Figure 1C displayed the 

location of CNV alteration of MRGs on chromosomes. 

The experiments stated above revealed the incredibly 

varied topography of genetic and expressional variation 

in MRGs between normal, suggesting the possibility 

that CNV regulates the mRNA expression of MRGs.  

It hints that the dysregulated expression of MRGs plays 

an important role in the carcinogenesis and development 

of BC.  

 

Identification of methylation-related subtypes 

 

We selected 1001 patients to further examine the 

expression pattern of MRG linked to carcinogenesis. 

The methylation network demonstrated the importance 

of methylation in BC patients, regulatory factor 

connectivity, and the general group of MRG 

connections (Figure 1D). Based on the expression 

profiles of the 57 MRGs, we used a consensus 

clustering method to categorize the BC patients. We 

found that the entire cohort was the best choice for 

MRG clusters A and B based on k = 2. (Figure  

2A). Patients in MRG cluster B had a better OS, hinted 

by the Kaplan-Meier curves (p =0. 044; Figure 2B).  

In BC analysis, the transcriptional profiles of MRGs 

were different clearly between the two subtypes 

(Figure 2C). In addition, we demonstrate significant 

differences in MRG expression and pathology 

characteristics (Figure 2D). 

 
Evaluation of TME  

 
The GSVA enrichment analysis revealed a significant 

difference between MRG clusters B and A. One of them 

focuses on inositol phosphate metabolism, chronic 

myeloid leukemia, endometrial cancer, and colorectal 

cancer, while the other one is maturity-onset diabetes of 
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Figure 1. (A) The CNV of 57 MRGs. (B) Expression distributions of differentially expressed MRGs between normal and BC tissues. Orange: the 
normal breast tissues; purple: breast cancer tissues. (C) The positions of the CNV alterations on their respective chromosomes for these 
MRGs. (D) The overall group of MRG interactions, regulatory factor connectivity, and value of prognosis in BC patients were identified in the 
network. The circle size reflects the P-value. The purple circle reflects the risk factors while the orange circle reflects the favorable factors. 
The pink line is represented by positive correlation with P<0.0001 while the blue line is represented by negative correlation with P<0.0001.  
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Figure 2. (A) Consensus matrix heatmap defining A and B MRG clusters (k = 2). (B) Kaplan-Meier curves indicated a shorter OS in patients 

with MRG cluster A than that in patients with MRG cluster B. P-values calculated by log-rank test. (C) The principal component analysis of A 
and B MRG clusters. (D) Heatmap of the clinical features and MRGs expression levels between the two MRG clusters. Colors from orange to 
purple indicate the trend of MRGs expression levels from low to high.  

9003
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the young, olfactory transduction, cardiac muscle 

contraction, and linoleic acid metabolism (Figure  

3A and Supplementary Table 3). We look into the 

relationships between the 22 different subsets of  

human immune cells and the two subtypes of each  

BC sample using the CIBERSORT method. There  

were considerable changes in the invasion patterns of 

immune cells between the two kinds (Figure 3B). 

 

Classification of gene clusters  

 

To investigate the biological behavior that underpins 

each focused flash pattern, 4097 DEGs associated  

with MRG cluster were found using the R package 

“limma”. Functional enrichment analysis was then 

carried out on this data (Figure 4A, 4B). These  

DEGs were involved in immunity and were present 

during all biological activities (Figure 4A and 

Supplementary Table 4). By demonstrating that cancer- 

and immunological-related pathways were enriched, 

KEGG analysis demonstrated the significance of 

methylation in the immune regulation of the TME 

(Figure 4B and Supplementary Table 4). Using 

univariate Cox regression analysis, 122 genes related 

to OS duration were chosen ((p<0.01). In order to 

validate these regulatory mechanisms, patients were 

divided into three gene categories based on prognostic 

genes using consensus clustering methodologies. 

Based on k = 3, we conclude that the entire cohort  

was the best option for gene clusters A, gene clusters 

B, and gene clusters C (Figure 4C). According to 

Kaplan-Meier curves (p<0. 013; Figure 4D), patients 

with gene cluster B had the highest OS, which is  

better than that of cluster A and cluster C. The three 

gene clusters’ MRG expression varied significantly, 

which was in line with our assumptions (Figure 4E).  

A study of the clinicopathological characteristics of 

several gene clusters also uncovered a large diversity 

in clinical characteristics (Figure 5). 

 

Construction and validation of the prognostic risk 

model 

 

Using the “caret package” in R, we first randomly 

divided the patients into training and testing groups  

at a ratio of 0.7:0.3 to examine the independent 

prognostic significance of the MRGs for BC patients. 

Next, LASSO and univariate Cox regression analysis 

were carried out (Figure 6A–6C). LASSO Cox 

regression analysis using the “glmnet” software to find 

the MRGs with the best prognostic value (Figure 6A, 

6B). As shown in Figure 6C, 12 genes associated  

with the OS of BC patients were initially screened 
using univariate Cox proportional hazard regression 

analysis. The relationship between the MRG cluster, 

gene cluster, risk groups, and survival status was 

depicted using a Sankey diagram (Figure 6D). The risk 

score distributions for the two MRG clusters and three 

gene clusters are shown in Figure 6E, 6F. 

 

Our findings supported the use of the entire set, the 

training set, the testing set, and the GEO external 

validation set. Figure 7A’s Kaplan-Meier analysis 

indicates that patients in the low-risk group will likely 

survive longer. The ROC curves showed the model’s 

high sensitivity and specificity for predicting survival, 

and the entire set’s 5-year AUC value was 0.773 (Figure 

7B). Figure 7A, 7B shows the analysis for the training 

set, the testing set, and the GEO external validation  

set, which demonstrates the model’s dependability. The 

nomogram containing the model and clinical features 

was performed accurately and sensitively for predicting 

survival in BC patients (Figure 7C). 

 

Evaluation of TME  

 

The following data was evaluated using the 

CIBERSORT algorithm. The scatter diagrams revealed 

that the risk score was inversely correlated with resting 

dendritic cells, M1 macrophages, monocytes, plasma 

cells, activated NK cells, follicular helper T cells, 

gamma delta T cells, regulatory T cells, and activated 

memory CD4 + T cells (Figure 8A). We also explore 

the relation between the number of immune cells  

and 12 genes in this model and found a significant 

correlation between most immune cells and 12 genes 

(Figure 8B).  

 

Mutation, immunotherapy response, and drug 

susceptibility analysis 

 

We next looked at how the distribution of somatic 

mutations varied in the TCGA-BC cohort. In the  

high- and low-risk groups, the top 10 mutations were 

PIK3CA, TP53, TTN, CDH1, GATA3, MUC16, 

KMT2C, MAP3K1, HMCN1, and FLG (Figure 9A, 

9B). When compared to patients in low-risk score 

group, those in high-risk score group exhibited greater 

frequencies of PIK3CA, TP53, TTN, and CDH1 

mutations. Compared to the low-risk group, patients in 

the high-risk group had an obviously higher frequency 

of PIK3CA mutations than those in the low-risk group. 

High-risk groups were related to a high stromal score, 

while low-risk groups were associated with higher 

immune scores (Figure 9C). Furthermore, low OS was 

linked to increased TBM (p<0.001; Figure 9D). The 

high-risk group’s TIDE score was lower, indicating that 

they may have been more responsive to immunotherapy 

(Figure 9E). Furthermore, we observed significant 
differences in treatment susceptibility between the two 

patient groups by comparing the IC50 of commonly 

used cancer drugs (Figure 10). 
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Figure 3. (A) Heatmap of significantly enriched KEGG subset of canonical pathways by GSEA analysis in A and B MRG clusters. (B) The 
infiltration levels of distinct immune cells in A and B MRG clusters were evaluated by ssGSEA analysis. *P<0.05, **P<0.01, ***P<0.001.  
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Figure 4. (A, B) GO and KEGG enrichment analyses. (C) Consensus matrix heatmap defining A, B and C gene clusters (k = 3). (D) Kaplan-Meier 
curves indicated that patients in gene cluster B had higher OS compared with patients in gene cluster A and C. P-values calculated by log-rank 
test. (E) The difference of gene expression levels between the three gene clusters. *P<0.05, **P<0.01, ***P<0.001.  

9006
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Analysis of drug susceptibility, mutation, and 

immunotherapy response 

 

To further examine the clinical impact of target  

genes, the ZMAT3 gene was knocked down for 

subsequent analysis. Following transfection with 

siRNA, a reduction in ZMAT3 mRNA expression was  

observed in both MDA-MB-231 and MCF-7 cells. 

Knockdown of ZMAT3 induced apoptosis in the  

two cell lines, as reflected in the flow cytometry 

results (Figure 11B, 11C), with higher numbers of 

early and late apoptotic cells observed compared  

to the control group (Figure 11A). These findings 

suggest that ZMAT3 may play a role in the regulation 

of apoptosis in BC cells and could be a potential 

therapeutic target. 

 

 
 

Figure 5. Heatmap of the clinical features and gene expression levels between the three gene clusters. Colors from orange to 
purple indicate the trend of gene expression levels from low to high.  
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Figure 6. (A) The LASSO regression algorithm to screen candidate prognostic DEGs. (B) The partial likelihood deviance with changing of log(λ) 
in LASSO regression analysis. (C) The forest plot showing the relationship of prognostic-related DEGs with prognosis in BC patients. (D) The 
relationship between the MRG cluster, gene cluster, risk groups, and survival status was visualized using the Sankey diagram. (E, F) The 
distribution of risk scores for the two MRG clusters and three gene clusters, respectively.  
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Figure 7. (A) The Kaplan-Meier analysis of high and low risk group in the entire cohort, training and testing sets, respectively. P-values 

calculated by log-rank test. (B) The ROC curves for the 1-, 3-, and 5-year AUC values in the entire cohort, training, and testing sets, 
respectively. (C) Nomogram based on risk score and clinical variables was reliable and sensitive for predicting survival in patients with BC.  
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Figure 8. (A) Spearman’s correlation coefficients were computed to investigate the potential relationship between risk score and immune 

cell infiltration status. (B) Spearman’s correlation coefficients were computed to investigate the potential relationship between immune cells 
infiltration levels and gene expression levels. Colors from orange to purple indicate the trend of correlation from negative to positive. 
*P<0.05, **P<0.01, ***P<0.001.  
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The oncogenic trait of ZMAT3 in breast cancer 

 

We identified the significant increase of ZMAT3 

expression in cancer tissues compared to the para-

cancerous mammary duct (Figure 12A). The MOD 

values of ZMAT3 that were also identified presented 

positive correlations with pathological grade (Figure 

12B, left) and clinical TNM stage (Figure 12B, right), 

which suggested ZMAT3 may function as the critical 

oncogene in breast cancer progression. Moreover, the 

survival analysis demonstrated that high expression of 

ZMAT3 predicted a poor prognosis (Figure 12C). 

 

Collectively, these findings indicate that the  

up-regulated ZMAT3 could be favourable for the 

malignant phenotypes of breast cancer. 
 

DISCUSSION 
 

Methylation, which involves significant modifications of 

proteins and nucleic acids, has been strongly associated 

with cancer [17]. Methylation, similar to necrosis, plays a 

crucial role in regulating cancer progression, metastasis, 

and spread as an important cellular response. RNA 

methylation can also have an impact on the tumor 

immunological microenvironment and the prognosis of 

patients [25–28]. For example, In BC cells, hypoxia-

inducible factor-1α and 2α dependent ALKBH5 can be 

activated, which results in NANOG mRNA being 

demethylated and influences the formation and incidence 

of tumors [29]. when the m6A methyltransferase is 

silenced, the stability of gene expression is impacted by 

the inhibition of the TP53 signaling pathway (a critical 

tumor suppressor gene) [30]. Similarly, m1A was reported 

to improve the translation efficiency and involved in 

determining the mRNA stability of BC [31]. DNMT3B 

and ALYREF (m5C regulators) were upregulated in BC 

and their high expression hint unfavorable prognosis [32]. 

The decreased levels of m6A (methylation) on ADAM19 

in glioblastoma multiforme result in increased expression, 

which enhances the development and self-renewal of 

glioblastoma stem-like cells. This, in turn, ultimately leads 

 

 
 

Figure 9. (A, B) The genes with top 10 mutations frequency in the high- and low-risk groups including PIK3CA, TP53, TTN, CDH1, GATA3, 

MUC16, KMT2C, MAP3K1, HMCN1, and FLG. (C) The ESITIMATE analysis showing that the high-risk scores were linked to a low stromal score 
while the low-risk scores were highly correlated with a high immune score. (D) The comparison of TMB scores in high and low risk groups.  
(E) TIDE scores were lower in the high-risk group, suggesting that the high risk score was more responsive to immunotherapy.  
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Figure 10. The comparison of IC50 value of anti-tumor drugs in high- and low-risk group.  
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Figure 11. (A) qPCR was used to detect ZMAT3 expression. (B) Apoptosis ratio (early/late) % of each group. (C) Results of flow cytometry for 

each group. 
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to carcinogenesis in glioblastoma. Reduced m6A levels 

result in AKT activation, increased proliferation, and 

tumorigenicity in endometrial cancer cells in about  

70% of endometrial cancers. rectal cancer patients with 

different consensus clusters of m6A RNA methylation 

regulators showed a significant difference in overall 

survival rate [27, 33]. Muraoka et al. demonstrated  

the viability of employing miR-34b/c methylation  

as a diagnosis and prognosis for malignant pleural 

mesothelioma in the context of lung cancer. Additionally, 

Lian et al. reported that RNA 5hmC methylation serves 

as a melanoma prognostic marker [34]. Five m6A RNA 

methylation regulatory factors, including HNRNPA2B1, 

HNRNPC, KIAA1429/VIRMA, RBM15, and METTL3, 

have been linked to lung cancer patients’ overall survival 

rates, according to a different study. Actually, as many 

genes affected by RNA methylation, including BCL2, 

FOXM1, HBXIP, and SOCS2, are crucial in regulating 

tumor development, RNA methylation is not only 

associated with carcinogenesis in diverse forms of  

cancer [35–37], Additionally, it is essential for tumor 

suppression since some loci’s lack of RNA methylation 

results in carcinogenesis [38]. According to a substantial 

number of studies, the overall effects and characteristics 

of different MRGs (methylated RNA genes) on the 

adjustment of tumor microenvironment (TME) infiltration 

have not been fully elucidated yet. However, the majority 

of research has concentrated on a single MRG or TME 

cell. According to recent research, MRG is highly 

aberrant at the genomic and transcriptional levels in BC 

[39, 40].  

 

We distinguished two distinct molecular subtypes  

based on 57 MRGs. Those with MRG cluster A of OS 

have more severe OS than patients with MRG cluster B, 

and the two clusters of OS have quite different natures. 

 

 
 

Figure 12. (A) Left: representative IHC images of ZMAT3 in breast cancer and the corresponding para-cancerous mammary duct. Scale bar = 
20 μm. Right: the MOD values for the staining scores. (B) The correlations of MOD value of ZMAT3 with pathological grade (left) and clinical 
TNM stage (right), respectively. (C) Kaplan-Meier survival analysis for breast cancer patients with higher and lower expression levels of 
ZMAT3.  

9014



www.aging-us.com 18 AGING 

Changes in mRNA transcriptomes across different 

methylation subtypes are significantly related to 

biological pathways involving MRG and the immune 

system. We discovered three genetic clusters using the 

DEGs in the two MRG clusters. According to the data, 

MRG may be used to predict clinical outcomes and the 

effectiveness of immunotherapy in BC. We were able to 

demonstrate their prognostic abilities as a result and 

identify the trustworthy prognostic risk score. Higher 

and lower risk scores were seen in immune-activated 

and inhibition-driven MRG clusters, respectively. The 

TME, prognosis, mutation, and therapy susceptibility 

among various patient populations varied significantly. 

Then, utilizing a fusion of risk ratings and tumor  

stage, we produced a quantitative Normandy map  

that dramatically enhanced performance and made it 

simpler to apply risk scores. This prognostic model can 

be used to categorize BC patients, aid in a better 

understanding of the molecular causes of BC, and offer 

novel ideas for focused treatment. Our study, leveraging 

the CIBERSORT deconvolution method, has unveiled 

significant disparities in immune cell infiltration across 

distinct MRG groups in breast cancer, highlighting the 

complexity of immune landscapes within subtypes. The 

observed dominance of specific immune cells, such as 

cytotoxic T cells or regulatory T cells in certain groups, 

points to varying degrees of tumor aggressiveness  

or immunosuppression, critical for tailoring prognosis 

and immunotherapy approaches. Notably, a pronounced 

presence of cytotoxic T cells could indicate a favorable 

response to immune checkpoint inhibitors, steering 

therapeutic strategies. These patterns of differential 

immune infiltration might also mirror the spectrum of 

immune evasion mechanisms, a reflection of the tumor’s 

adaptive pressures on the immune system. Unraveling 

these mechanisms is pivotal for crafting bespoke 

immunotherapies aligned with the unique immune 

profiles of MRG-defined subgroups. The distinct immune 

infiltration landscapes underscore the integral role of 

immunogenomic analyses in oncology, enriching our 

understanding of tumor-immune dynamics and opening 

new avenues for personalized immunotherapeutic 

interventions, necessitating further exploratory studies 

to elucidate the functional implications of these immune 

cell infiltration differences. 

 

After receiving standard therapy, BC patients have a 

poor prognosis because of elevated checkpoints, tumor-

infiltrating cells, and neoantigens [41, 42]. The fact that 

patients with BC still have a heterogeneous prognosis 

despite recent therapeutic advancements emphasizes  

the crucial part TME plays in the development and 

progression of BC tumors [43]. Immune cells such  
as macrophages, lymphocytes, and granulocytes are 

among the key biological components of TME [44].  

To aid in survival, these cells take part in a range of 

immunological reactions and actions, such as the 

coordination of inflammatory responses by tumors  

[45, 46]. Additional data point to a critical function for 

TME in cancer development, progression, and therapy 

resistance [47]. In the present investigation, immune 

activation-driven MRG (cluster B) was linked with 

lower risk scores than immunological inhibition-driven 

MRG (cluster A). In terms of the TME characteristics 

and relative richness of 22 immune cells, we discovered 

that these two molecular clusters and various risk scores 

differed significantly from one another.  

 

These findings suggest that MRG plays a crucial role  

in the growth of BC. An increasing body of evidence 

supports the significance of potent T cells, memory T 

cells, and T cells in the immunological response 

against BC. CD4+ T cells play a significant role  

in tumor management, as they can either enhance or 

suppress anti-tumor responses. However, CD8+ T 

cells are generally considered to be the key drivers  

of anti-tumor immunity. They are believed to be 

primarily responsible for exerting anti-tumor effects 

and facilitating immune responses against cancer 

cells. For instance, by stimulating a variety of innate 

immune cell types, including CD8+ T cells, NK cells, 

and others, conventional CD4+ T cells can aid in  

the control of tumors [48]. Since tumor-infiltrating T 

cell concentrations in BC samples were higher than 

those in healthy tissues, this suggested a favorable 

prognosis. Increased infiltration of activated memory 

CD4+ and CD8+ T cells and T cells indicated that  

B cluster and low-risk groups had better prognoses 

and likely contributed to the advancement of BC.  

The importance of effector T cell, memory T cell, and  

T cell differentiation is becoming increasingly clear 

[25]. M1 macrophages and M2 macrophages are the 

two phenotypes of tumor-associated macrophages  

(as we all known, the former prevents the spread of 

cancer, and the latter promotes cancer progression). 

According to this study, patients with low-risk scores 

may benefit from immunotherapy because macro-

phages M1 was more abundant in the groups with 

low-risk scores. Immunosuppressive M2 macrophages 

support matrix remodeling, which encourages the 

growth of malignancies [49]. As in previous research, 

we discovered that M1 macrophage infiltration 

increased in MRG cluster B groups with low risk-

score and good prognosis, but not in MRG cluster A 

groups with high risk-score and poor prognosis.  

 

Although, it was shown that a large number of  

studies found that B cells support the immunological 

response. In Hodgkin lymphoma, for instance, studies 
have indicated that B cell enrichment is positively 

correlated with responsiveness to PD-1 inhibition, as 

described by Vari et al. This suggests that B cells may 
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contribute to the effectiveness of immune checkpoint 

blockade therapies in certain cancer types [50]. 

According to Engelhard V et al., patients who reacted 

to immune checkpoint inhibition had significantly 

higher levels of the B cell-related genes than those 

who did not [51]. According to Hollern et al., immune 

checkpoint therapy induces T follicular helper cell 

activation of B cells to facilitate the anti-tumor 

response in these models [52]. Additionally, a favorable 

prognosis in BC was associated with tumor-infiltrating 

B cells. Numerous studies have demonstrated that T 

cells and B cells interact and go through cooperative 

selection, specialization, and clonal growth in tertiary 

lymphoid structures associated with tumors. Importantly, 

B cells can interact with T cells by presenting them 

with homologous tumor-derived antigens; the functional 

outcomes of such interactions are influenced by the B 

cell phenotype [53]. The findings of this study showed 

that B cells represent a unique immunotherapy target 

and may be an effective cancer-fighting tool, rather 

than merely incidental contributions to anti-cancer 

immunotherapy. This is consistent with our findings. 

 
In this study, the expression levels of a part of immune 

cells were found to be different obviously in the risk 

model of MRGs. Our study revealed that the risk score 

was inversely correlated with resting dendritic cells, M1 

macrophages, monocytes, plasma cells, active NK cells, 

follicular helper T cells, gamma delta T cells, regulatory 

T cells, and activated memory CD4 + T cells. This 

implies that BC immune cell infiltration is related to the 

risk model created using MRGs. Our study shows a 

significant correlation between most immune cells and 

12 genes, The high-risk score group was related to a 

high stromal score, and the low-risk score group was 

closely associated with a high immune score. Yan-Fei 

Ma et al. demonstrated Early breast cancer was shown 

to have high levels of CD52 expression, and these levels 

were correlated with a good prognosis [54]. Higher 

infiltrations of M1 macrophages, monocytes, T follicular 

helper cells, and resting memory CD4 T cells were 

caused by overexpression of CD52. Downregulation of 

CD52 led to significant M2 macrophage infiltration 

[54]. Studies have shown that some TME and IGLL5 

expression are linked. Additionally, three different types 

of TME are positively linked with IGLL5 expression, 

according to our immune infiltration findings. Potential 

for IGLL5 as a predictive biomarker of clear cell renal 

cell carcinoma [55]. According to Scannell Bryan et al., 

the NEK10 variant may play a role in the incidence of 

breast cancer [56]. Our study established a risk model 

for BC and found evidence of MRGs involvement; 

however, further clinical BC tissue samples and cell 

tests are required to corroborate this. A high-risk score 

is an independent risk factor for a poor prognosis in BC 

patients and is associated with patient outcomes. 

The study has several limitations. First, all the analysis 

is based entirely on data from a common database. 

Therefore, an inherent bias in case selection may have 

influenced the results. Second, further prospective 

studies and additional in vitro and in vivo studies are 

needed to validate our findings. In addition, most 

datasets were unable to analyze data on important 

clinical variables (such as surgery, neoadjuvant 

chemotherapy, and chemoradiotherapy) that could 

affect the outcome of immune response and methylation 

status. 

 

CONCLUSIONS 
 

Through our comprehensive investigation of MRGs, we 

have discovered their influence on the tumor micro-

environment (TME), clinicopathological characteristics, 

and various prognostic regulatory systems. Furthermore, 

we have identified the therapeutic roles of immuno-

therapy and commonly used anti-tumor medications. 

These findings emphasize the clinical significance  

of MRGs and provide novel insights to guide both 

immunotherapy and conventional anti-tumor strategies 

in BC patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. The list of MRGs.  

 
Supplementary Table 2. The details of GSVA analysis.  

 
Supplementary Table 3. The details of GO analysis.  

 
Supplementary Table 4. The details of KEGG analysis.  

 
Supplementary Table 5. The clinical information of breast cancer patients from TCGA database. 
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Supplementary File 
 

Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. The R code script. 
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