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ABSTRACT 
 

Background: Liver hepatocellular carcinoma (LIHC) ranks among the malignancies with the highest mortality 
rates, primarily due to chemoresistance culminating in treatment failure. Despite its impact, predictive models 
addressing disease progression, tumor microenvironment, and drug sensitivity remain elusive for LIHC patients. 
Recognizing the significant influence of various programmed cell death (PCD) modes on tumor evolution, this 
study investigates PCD genes to elucidate their implications on the prognosis and immune landscape of LIHC. 
Methods: To develop the classification and model, we employed a total of 17 genes associated with PCD patterns. 
To collect data, we acquired gene expression profiles, somatic mutation information, copy number variation data, 
and corresponding clinical data from the TCGA database, specifically from LIHC patients. Moreover, we obtained 
spatial transcriptome data and additional bulk datasets from the Gene Expression Omnibus (GEO) database to 
conduct further analysis. Various experiments were conducted to validate the role of the PCD gene PRKDC in 
proliferation, migration, invasion, EMT, cell cycle, therapeutic sensitivity, and antitumor immunity. 
Results: A novel LIHC classification based on these genes divided patients into two clusters, C1 and C2. The C2 
cluster exhibited characteristics indicative of poor prognosis and an immune-activated microenvironment. This 
group showed greater response potential to immune checkpoint inhibitors, displaying higher levels of certain 
immune signatures and receptors. A programmed cell death index (PCDI) was constructed using 17 selected 
PCD genes. This index could effectively predict patient prognosis, with higher PCDI indicating poorer survival 
rates and a more pro-tumor microenvironment. Immune landscapes revealed varying interactions with PCDI, 
suggesting therapeutic targets and insights into treatment resistance. Moreover, experiments results suggested 
that PRKDC can augment the invasive nature and growth of malignant cells and it can serve as a potential target 
for therapy, offering hope for ameliorating the prognosis of LIHC patients. 
Conclusions: The study uncovers the insights of programmed cell death in the prognosis and potential 
therapeutic interventions. And we found that PRKDC can serve as a target for enhancing the efficacy of 
antitumor immunity while sensitizing chemotherapy and targeted therapy in liver hepatocellular carcinoma. 
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INTRODUCTION 
 

Liver hepatocellular carcinoma (LIHC), a third most 

common cause of cancer-related deaths worldwide, 

remains a significant global health concern [1]. With 

rising incidence rates, it is imperative to understand the 

molecular characteristics and genetic predispositions 

that govern its progression and influence patient 

prognosis. The challenge is further compounded by  

the myriad of cellular processes that contribute to its 

pathogenesis, rendering the identification of viable 

therapeutic targets and prognostic markers vital for 

improving patient outcomes. 
 

One such crucial cellular process is programmed  

cell death (PCD). Unlike accidental cell death, which  

is uncontrolled, PCD is characterized by a complex 

array of regulated mechanisms [2]. Within the realm  

of PCD, several types have been identified, each  

with its distinct molecular signatures and functional 

implications. Apoptosis is an orderly cell death process 

where cells are removed without causing inflammation. 

Necroptosis, initially thought to be uncontrolled, is a 

form of programmed necrosis marked by the assembly 

of necrosomes. Pyroptosis is an inflammatory mode of 

cell death resulting in cell lysis and pro-inflammatory 

factor release. Ferroptosis involves iron-dependent lipid 

peroxidation leading to cell death, while the recently 

identified cuproptosis stems from copper-triggered cell 

demise. Entotic cell death, a non-apoptotic pathway, sees 

one cell actively engulfing another. Netotic cell death 

results from the release of neutrophil extracellular traps 

(NETs), often in response to stress including infection 

or injury. Parthanatos is triggered by overactivation of 

the PARP-1 nuclease, and lysosome-dependent cell 

death occurs when hydrolases permeate into the cytosol 

after membrane rupture. Autophagy-dependent cell death 

employs lysosomal degradation, aiding in adaptation of 

metabolism as well as nutrient cycling. Alkaliptosis is a 

newly characterized PCD form influenced by cellular 

alkalinization, and oxeiptosis integrates reactive oxygen 

sensing mechanisms, potentially co-regulating other cell 

death pathways [3]. 
 

The evolving understanding of PCD has not only 

provided insight into cellular dynamics but has also 

paved the way for therapeutic developments [2].  

Drugs like BCL-2 inhibitors, approved for specific 

malignancies, manipulate the apoptosis pathway, while 

others target novel PCD forms, holding promise for 

future treatment regimens [4]. Additionally, those PCD 

also are implicated in the tumor microenvironment and 

immunotherapy [5]. 
 

In the landscape of LIHC, the role and impact  

of PCD remain under-explored. Given the pivotal  

role of PCD in cancer progression, tumor 

microenvironment and drug resistance, a thorough 

comprehension of its influence in LIHC is of 

paramount importance. Recognizing survival-associated 

genes through comprehensive genomic databases 

could offer valuable prognostic insights and guide 

tailored therapeutic strategies. Consequently, our study 

endeavors to establish a cell death index (CDI) for 

LIHC, aiming to predict therapeutic efficacy and 

prognosis. In essence, our investigation seeks to 

unravel the heterogeneity within LIHC, assess clinical 

outcomes, and potentially aid in optimizing therapeutic 

choices for patients.  

 
MATERIALS AND METHODS 

 
Aggregation of transcriptome and spatial 

transcriptomic datasets 

 
The TCGA data portal (https://portal.gdc.cancer.gov/) 

provided access to transcriptome datasets and  

clinical data of liver cancer patients, including  

Stage T stage, overall survival (OS), disease-specific 

survival (DSS), and disease-free survival (DFS). 

(https://portal.gdc.cancer.gov/) [6]. GEO datasets 

(GSE14520, GSE76427, GSE116174, and GSE144269) 

were acquired from the Gene-Expression Omnibus 

(GEO) for the purpose of verification. These datasets 

were obtained to validate the findings and conclusions 

drawn from the study. Furthermore, spatial transcrip-

tomic datasets from three different liver cancer patients 

were also obtained from the work conducted by Gu et 

al. These datasets are crucial for further analysis and 

comparison, enabling comprehensive research in the 

field of liver cancer [7]. To perform the bioinformatics 

analysis, we utilized R Bioconductor packages and  

R 4.1.1. The webpage https://gdc.cancer.gov/about-

data/publications/panimmune provides information on 

the T cell receptor/B cell receptor (TCR/BCR) richness 

in liver cancer samples.  

 
Quantification of immune cell infiltration and 

evaluation of immunotherapy outcomes 

 
Thorsson et al. published the findings on the Fraction of 

Leukocytes, Heterogeneity within the Tumor, Impaired 

Homologous Recombination, Shannon Diversity of 

BCR/TCR, and Richness of BCR/TCR in patients  

with TCGA LIHC [8]. To evaluate the distribution  

of immune cells within the tumor, we utilized the 

CIBERSORT algorithm [9], available for download from 

the Tumor Immune Estimation Resource (TIMER2.0) 

database [10]. Furthermore, the TIDE score and 

immunotherapy outcomes were computed using the 

TIDE website (http://tide.dfci.harvard.edu/) [11]. 
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Calculation of immune signatures 

 

In order to investigate the immune profiles of 

individuals diagnosed with liver cancer, we collected  

an additional set of 17 genes associated with immune 

function. This gene set encompasses MHCI, MHCII, 

and pro-tumor cytokines, among other factors [12]. 

 

Gene set variation analysis (GSVA) analysis 

 

In order to examine the differences in immune associated 

signatures and HALLMARK among individuals with 

liver cancer, we conducted GSVA enrichment analysis 

using the ‘GSVA’ R package [13]. The gene set for 

HALLMARK was sourced from the MSigDB database 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). 

Pathway enrichment analysis was performed utilizing the 

fgsea package [14].  

 

Establishing classification and machine learning 

models utilizing programmed cell death genes 

 

Zou et al. compiled a comprehensive list of 1078 

genes that are involved in programmed cell death 

(PCD), including genes that regulate twelve different 

PCD patterns [3]. To identify differentially expressed 

genes (DEGs) related to PCD, we used the Limma 

package [15]. DEGs were identified using a criterion 

of adjusted p-value less than 0.05 and an absolute 

value of log2 fold change greater than 1. Additionally, 

we performed univariate Cox proportional hazard 

regression to identify PCD genes that may be 

associated with the prognosis of liver cancer. Based 

on their analysis, a total of 83 PCD genes were 

selected for further investigation. These genes showed 

promising associations with the progression and 

prognosis of liver cancer patients. This finding 

suggests that these PCD genes may play a crucial role 

in the development and clinical outcomes of liver 

cancer.  

 

Additionally, using the R package ‘NMF’ [16],  

liver cancer patients were categorized into two  

cohorts depending on selected PCD genes. Then, by 

employing the machining learning algorithm and 

incorporating these PCD-related genes, a reliable 

model was constructed to forecast the prognosis of 

patients with liver cancer. 

 

Further, we utilized the least absolute shrinkage  

and selection operator (LASSO) regression [17] 

analysis to reduce dimensionality and identify optimal 

variables. These variables, along with their regression 
coefficients, were used to calculate the PCDI. Patients 

were then divided into high- and low-PCDI scores 

groups based on the median value. 

Prediction of drug sensitivity among groups with 

varying PCDI levels 

 

In the study reported by reference, we utilized  

the calcPhenotype function from the R package 

‘oncoPredict’ to predict the half maximal inhibitory 

concentration (IC50) of drugs. To determine favorable 

drugs, a p-value threshold of 0.05 was employed. This 

selection criterion was based on gene expression 

profiles obtained from various cell lines [18]. 

 

Cell culture and cell transfection 

 

Huh-7 (LIHC), Hep3B (LIHC) and other cells were 

obtained from Xiangya Medical College Cell Bank 

(Changsha, China). Cell lines were grown in DMEM 

containing 10% fetal bovine serum. shRNAs were 

sourced from Genechem, Shanghai, China. Following the 

suggested guidelines, the cells underwent transfection 

and underwent selection with 2 ug/mL puromycin  

from Beyotime, Shanghai, China. The shRNA-PRKDC 

sequences were: 

 

shPRKDC#1: Forward 5'-GCCTTACTAGAAGCT 

ATATTG-3 

Reverse 5’-CAATATAGCTTCTAGTAAGGC-3 

shPRKDC#2: Forward 5’-CCTGAAGTCTTTACAA 

CATAT-3 

Reverse 5’-ATATGTTGTAAAGACTTCAGG-3  

shCon: Forward 5’-AATACGGCGATGTGTCAGG-3 

Reverse 5’-CCTGACACATCGCCGTATT-3 

 

Western blot analysis and quantitative real-time 

PCR  

 

The experimental method has been elaborated upon in 

an earlier study [19, 20]. For Western blot, RIPA was 

used to lyse cells and BCA kit was utilized to detect 

the protein level, then proteins were isolated in SDS-

PAGE and then transferred to PVDF membranes 

before incubating with primary antibodies and second 

antibodies, finally, the membranes were visualized 

using an ECL system after soaking in luminescent 

buffer. The antibodies used for Western blot analysis 

were: β-Actin (1:5000; Cell Signaling Technologies, 

USA), PRKDC (1:2000; Proteintech, USA), Cleaved 

Caspase-3 (1:1000; Cell Signaling Technologies), Bax 

(1:1000; Cell Signaling Technologies), Bcl-2 (1:1000; 

Cell Signaling Technologies), E-Cadherin (1:1000; 

Cell Signaling Technologies), N-Cadherin (1:1000; 

Cell Signaling Technologies), and Vimentin (1:1000; 

Cell Signaling Technologies). 

 
For quantitative real-time PCR, the RNA was extracted 

from cell with TRIzol, and the PrimeScript RT reagent 

kit was used to reverse transcribe. qRT-PCR was done 
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using SYBR Premix ExTaq on an Applied Biosystems 

7300 System. The mRNA primers for quantitative real-

time PCR included: 

 

PRKDC: Forward 5’-CATGGAAGAAGATCCCCAG 

A-3 

Reverse 5’-TGGGCACACCACTTTAACAA-3 

GAPDH: Forward 5’-GGAGCGAGATCCCTCCAAA 

AT-3 

Reverse 5’-GGCTGTTGTCATACTTCTCATGG-3 

CCL2: Forward 5’-TCGCGAGCTATAGAAGAATCA-3 

Reverse 5’-TGTTCAAGTCTTCGGAGTTTG-3 

CCL4: Forward 5’-CCAAACCAAAAGAAGCAAGC-3 

Reverse 5’-ACAGTGGACCATCCCCATAG-3 

CCL5: Forward 5’-GAGTATTTCTACACCAGTGGC 

AAG-3 

Reverse 5’-TCCCGAACCCATTTCTTCTCT-3 

CXCL1: Forward 5’-ACCCAAACCGAAGTCATAG 

CC-3 

Reverse 5’-TTGTCAGAAGCCAGCGTTCA-3 

CXCL8: Forward 5’-TTTTGCCAAGGAGTGCTAAA 

GA-3 

Reverse 5’-AACCCTCTGCACCCAGTTTTC-3 

CXCL10: Forward 5’TGGCATTCAAGGAGTACCT 

CTC-3 

Reverse 5’-GGACAAAATTGGCTTGCAGGA-3 

 

Cell viability, clonogenic assay, wound healing assay, 

and transwell assay 

 

For cell viability assay, 5000 cells were cultured in 

each well of 96-well plate overnight, then treated them 

using different reagents for a proper time, and detected 

the absorbance value at 460 nm after cultured with 

10% CCK-8 reagent for 2 hours. For clonogenic assay, 

500 cells were cultured in each well of 6-well plate 

overnight, and treated them using CD8+ T cells, after 

2 weeks, the plates were scanned and clone number 

were counted. For wound healing assay, cells were 

seeded in 6-well plates, then wounded with a 200 μl tip 

when they reached 90% saturation, and photographed 

at 0 and 48 hours. For transwell assay, 4×104 cells in 

2000 μl DMEM were seeded in the upper chambers, 

and 600 μl DMEM with 15% FBS were added to the 

lower chambers. 24 hours later, the cells were fixed 

and stained using crystal violet, and photographed 

using a microscope. 

 

Cell death analysis  

 

Cells were plated at a suitable density in  

12-well plates. Following the appropriate incubation 

time, they were gathered (inclusive of floating  
dead cells) and were stained with trypan blue. The 

proportion of dead cells was then measured using  

a microscope. 

Cell cycle analysis 

 

Cell Cycle Analysis Kit from BD Biosciences, 

Shanghai, China was employed and the protocol 

provided was adhered to. Briefly, 2×106 transfected 

cells were fixed using 70% ethanol for 24 hours at 4° C, 

rinsed with PBS, and then stained with propidium 

iodide in darkness for 30 minutes. Subsequently, flow 

cytometric detection was conducted. The results were 

interpreted using ModFit LT 5.0. 

 

ELISA 

 

Supernatants from cell cultures in 24-well plates were 

harvested, and the chemokines including CCL2, CCL4, 

CCL5, CXCL1, CXCL8, and CXCL10 were identified 

with ELISA kit (Proteintech, USA). Measurements 

were taken with a Biotech microplate reader (Thermo 

Fisher Scientific, USA) as per the given instructions. 

Chemokine concentrations were determined based on 

OD readings at 450 nm. 

 

CD8+ T cell migration assay 

 

CD8+ T cells were extracted from human peripheral 

blood utilizing the Human CD8 T Cells Kit (#11348D, 

Thermo Fisher Scientific, USA) following the provided 

guidelines. The migration assay for these T cells was then 

conducted using a 24‐well transwell system featuring a 

6.5 mm diameter and 8 µm pore size polycarbonate 

membrane (Corning, USA). Supernatants, amounting  

to 600 µL, either from the PRKDC knockdown group  

or the control group of HCC cells, were added to the 

bottom chamber. Concurrently, 1 × 105 CD8+ T cells  

in 100 μl media were placed in the top chamber. Post  

a 6-hour incubation, the migrated T cells in the  

bottom chamber were gathered and quantified via a cell 

counting plate. 

 

T cell-mediated tumor cell-killing assay 

 

HCC cells were plated in a 12-well plate and  

left overnight before a 48-hour co-culturing with T 

cells. Post-culturing, the cells were rinsed with PBS 

twice, and residual cells were stained with crystal 

violet. Images of these plates were captured, and 

subsequent OD readings were acquired at 570 nm 

using a microplate reader.  

 

Statistical analysis 

 

The ‘maftools’ R package [21] was utilized to 

investigate masked somatic mutation data among  
LIHC patients. The Wilcoxon test was employed to 

compare multiple features among different groups. 

Spearman's correlation coefficient was used to calculate 
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the correlation between the score of PCD and immune 

features combined with drug IC50. The ‘survminer’ R 

package [22] was used to apply Kaplan-Meier survival 

analysis to investigate the relationship between liver 

cancer patient groups and survival. Univariate Cox 

proportional hazard regression was utilized to examine 

the relevance between PCD index and overall survival, 

while multivariate Cox regression was employed to 

evaluate the independent prognostic significance of 

PCD index compared to other clinical parameters. A 

two-way ANOVA test was used to determine the effect 

of PRKDC and T cell on cell survival. P-value below 

0.05 was considered statistically significant. 

 

Availability of data and materials 

 

We utilized the liver cancer (LIHC) dataset from the 

TCGA repository (https://portal.gdc.cancer.gov/projects/ 

TCGA). We also acquired four validation LIHC 

datasets, namely GSE14520, GSE76427, GSE116174, 

and GSE144269 from the publicly available GEO 

database (http://www.ncbi.nlm.nih.gov/geo). In addition, 

we retrieved the raw data of spatial transcriptomic 

dataset from three liver cancer patients from Gu et al. 

Both datasets can be accessed freely for research use. 

 

RESULTS 
 

Genomics and functional landscapes of prognosis 

associated programmed-cell-death-genes in LIHC 

patients 

 

In our study, we exploited the TCGA-LIHC cohort  

and applied the Limma algorithm to identify 815 

differentially expressed PCD genes from 17 PCD 

patterns. The selection criteria included an adjusted  

p-value less than 0.05 (Supplementary Figure 1A).  

We then used the unique Cox method to analyze  

the identified genes and found that 100 of them were 

significantly correlated with the prognosis of LIHC 

patients. By intersecting the results, we identified a 

total of 83 PCD genes that were relevant to OS or 

tumor progression (Supplementary Figure 1B). To 

further confirm the universal expression of the PCD 

genes, we included four GEO datasets related to  

liver cancer (GSE14520, GSE76427, GSE116174, and 

GSE144269) in our investigation. After conducting  

a comprehensive intersection analysis, we found that 

45 PCD genes showed consistent expression patterns 

in multiple datasets. Therefore, we considered these 

genes appropriate for further analysis (Supplementary 

Figure 1C). The Gene Ontology (GO) enrichment 

analysis indicated that the differentially expressed 

genes (DEGs) are linked to PCD and apoptotic-related 

pathways, including extrinsic apoptotic signaling path-

way, intrinsic apoptotic signaling pathway, regulation 

of autophagy, and regulation of apoptotic signaling 

pathway, demonstrating that the DEGs plays a pivotal 

role in regulating the process of cellular demise. 

Extrinsic and intrinsic apoptotic signaling pathways 

directly participate in the programmed process of cell 

death, responding to death signals originating from 

extracellular and intracellular sources, respectively. 

Additionally, the regulation of autophagy modulation 

and apoptotic signaling pathways further signifies  

the ability of cells to finely regulate autophagy and 

apoptosis mechanisms to maintain cellular homeostasis 

or promote orderly cell death in response to adverse 

conditions (Supplementary Figure 1D). Additionally, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis highlighted the DEGs’ role in crucial biological 

pathways such as mTOR, JAK-STAT, and HIF-1 

signaling (Supplementary Figure 1E). The study also 

evaluated the variation in PCD-related genes and 

found that approximately 54.08% (199/368) of LIHC 

patients had mutation sites, with TP53 having the 

highest mutation frequency of 29% (Supplementary 

Figure 1F, 1G). Additionally, the CNV status of  

these 45 PCD genes was displayed in Supplementary 

Figure 1H. 

 
Establishment of a novel classification of LIHC 

based on cell death-related genes 

 

To uncover potential subtypes of liver hepatocellular 

carcinoma (LIHC) patients, we conducted a non-

negative matrix factorization (NMF) analysis using  

45 prognosis-related PCD genes. Our findings suggest 

that LIHC patients can be classified into two distinct 

clusters, namely C1 and C2, when n=2. This was 

demonstrated by the pronounced distinctions between 

the subgroups (Figures 1A). The expression of the  

45-prognosis related PCD genes in the two clusters  

was displayed in Figure 1B. We also investigated  

the enrichment scores of cell death patterns between 

these, observing that the scores of C2 patients were 

more pronounced than those of cluster 1 (Figure 1C). 

Additionally, distinct differences in overall survival 

(OS), progression-free interval (PFS), and disease-

spatial survival (DSS) were observed between the two 

clusters (P < 0.05, Figure 1D). While cluster 1 showed 

a favorable prognosis, cluster 2 was indicative of a 

poorer outcome. To delve into possible mechanisms, 

we contrasted mRNA expression between the C1 and 

C2 groups (Figure 1E). Employing the clusterProfiler 

R package, it was discerned that cluster 2 was enriched 

in pathways tied to tumor metastasis and progression, 

such as the Hippo, PI3K-Akt, TGF-beta, and NF-kappa 

B signaling pathways (Supplementary Figure 1I, 1J). 

 
In contrast, the cluster 1 showed an up-regulation  

of metabolic pathways (e.g., glutathione metabolism, 

9051

https://portal.gdc.cancer.gov/projects/TCGA
https://portal.gdc.cancer.gov/projects/TCGA
http://www.ncbi.nlm.nih.gov/geo


www.aging-us.com 6 AGING 

tryptophan metabolism, or fatty acid metabolism) as 

shown in Figures 1F. The results of hallmark pathway 

enrichment also confirmed that C2 patients enriched in 

pathways linked to tumor cell proliferation, including 

MITOTIC_SPINDLE, MYOGENESIS, E2F_TARGETS, 

and G2M_CHECKPOINT (Supplementary Figure 1K).  

 

Immunotherapy showed greater efficacy in LIHC 

patients categorized in C2 group 

 

Considering the pivotal role of immunotherapy as  

a therapeutic strategy for cancer, coupled with the 

substantial impact of cell death in triggering anti-

tumor immune responses, we examined the tumor 

microenvironment (TME) in both clusters. 

 

As Tertiary lymphoid structures (TLS) act as germinal 

centers for immune cells in the TME, we assessed the 

expression of chemokines that contribute to TLS 

formation. Interestingly, we observed a high expression 

of most chemokines in C2. More specifically, C2 

exhibited elevated levels of CCL11, CXCL13, CXCL9, 

CXCL11, CCL7, CCL20, CCR4, CCL18, CXCR4, 

CXCR3, CCR3, CCR7, CCR5, CCR2, CCL5, CCR6, 

CCR1, CCL3, CCL22, CCL8, XCL1, CXCR6, CCR9, 

PF4, CXCL6, CCR10, CX3CR1, CXCL14, CXCL12, 

CCL21, and CCL28 (Figure 2A). Furthermore, we 

observed that numerous interferons and their related 

receptors (e.g., IFNG, IFNAR2, IFNGR2), along  

with many interleukins and their receptors, were linked 

to immune response activation (Figure 2B, 2C). 

Consistently, we also found that C2 had a higher 

proportion of immune-stimulating cells, namely B cell 

naive, Mast cell activated, and Monocyte. Conversely, 

C1 had a larger proportion of immunosuppressive cells, 

including myeloid dendritic cell resting and regulatory 

T cells (Tregs) (Figure 2D).  

 

Considering the significance of the presence of  

immune checkpoints as a fundamental factor in  

immune checkpoint inhibitors (ICIs) treatment, we 

conducted a further analysis on the expression of 

immune checkpoints within 2 distinct clusters. Of note, 

the levels of numerous checkpoints (e.g., CD274/PD-

L1, CTLA4, PDCD1/PD1, IDO1/2, LAG3, TIGIT, 

HAVCR2/TIM-3, PDCD1LG2/PD-L2) in C2 were 

higher than those in C1 (Figure 2E). In line with this, 

we found that C2 group also exhibited higher scores of 

 

 

 

Figure 1. Establishment of a novel LIHC classification based on cell death-related genes. (A) LIHC patients were classified into two 

molecular groups using NMF algorithm. (B) Heatmap displays the expression of 45 selected PCD genes in the two groups. (C) Heatmap shows 
the enrichment scores of cell death patterns between the clusters. (D) Kaplan-Meier analysis reveals the overall survival, progression free 
survival rates, and disease-spatial survival for cluster 1 and 2 groups, demonstrating superior prognoses for patients in cluster 1 compared to 
those in cluster 2. (E) Volcano plot illustrates differentially expressed genes (DEGs) in the two clusters. 
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Figure 2. Immune landscapes of two groups. (A) Comparative box plots illustrating normalized expression levels of chemokines and 

receptors in two groups. (B) Comparative box plots showcasing normalized expression levels of interleukins and their receptors in two 
groups. (C) Comparative box plots demonstrating normalized expression levels of interferons and their receptors in two groups.  
(D) Comparative box plots revealing normalized fraction levels of infiltrated immune cells calculated by CIBERSORT in the two clusters.  
(E) Comparative box plots displaying normalized expression levels of immune checkpoints in two groups. (F) Comparative box plots 
presenting ssGSEA scores for immune function signatures between two groups. (G) Submap result for predicting the immunotherapy of anti-
CTLA4 and anti-PD1 in C1 and C2 groups (*P < 0.05, **P < 0.01, and ***P < 0.001 determined by Wilcoxon test). 
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immune function signatures, including MHCI, MHCII, 

and inflammation promoting etc. (Figure 3G). This 

disparity suggests that patients with LIHC in C2 

exhibited a greater sensitivity to immunotherapy. Due 

to the unavailability of publicly accessible LIHC 

immunotherapy-related datasets, we employed the 

submap algorithm to predict the sensitivity of groups 

C1 and C2 to immunotherapy. Consistent with previous 

findings, the submap results demonstrated that C2 

exhibited greater sensitivity to anti-PD1 immunotherapy, 

which was further confirmed by high score of TIDE  

in C2 (Figure 2G and Supplementary Figure 2A). 

Moreover, the results indicate that patients with the  

C2 group features exhibit higher levels of somatic 

diversification in their immunoglobulins or immune 

receptors, such as Leukocyte Fraction, Intratumor 

Heterogeneity, and Homologous Recombination Defects 

(Supplementary Figure 2B–2D). Additionally, the C2 

group also shows an increase in TCR/BCR Shannon 

and Diversity (Supplementary Figure 2E, 2F).  

 

Overall, the TME in C2 patients showed enriched 

TCR/BCR diversity as well as up-regulated expression 

of immune checkpoints, suggesting that these patients 

may benefit more from ICIs. 

 

Construction of a robust programmed cell death 

index for predicting the prognosis of LIHC patients 

 

To establish a reliable PCD index for predicting the 

prognosis of LIHC patients, we utilized LASSO and 

multiple Cox regression analysis. We conducted 500 

iterations mitigate the random errors associated with 

LASSO regression and ultimately selected 17 PCD 

genes. These genes include CBS, CD74, CDC37, 

ENO1, FYN, GLUD1, HERC1, IL12A, MT3, 

PDCD6, PDIA3, PRKD1, PRKDC, RNF5, SAT1, 

TNFRSF1B, and YWHAB. We then used these genes 

to create a model and retained the model with the 

highest five-year AUC (Figure 3A). We observed that 

high PCDI patients were significantly associated with 

advanced stages such as Grade and Stage (Figure 3B). 

We generated a heatmap to display variances in gene 

expression profiles between TCGA LIHC patients 

with low and high PCDI, including their related 

clinical features (Figure 3C). 

 

To discern variations in biological processes between 

the PCDI subgroups, we employed Gene set variation 

analysis (GSVA). Results from the three datasets 

(TCGA, GSE144269 and GSE76427) revealed that  

the HALLMARK MYC TARGETS V1 pathway was 

the most identified biological process (Figure 3D). 
Furthermore, the correlation between these genes  

in HALLMARK MYC TARGETS V1 pathway was 

displayed in Figure 3E. 

Exogenous verification of the precision and 

independence of PCDI 

 

After establishing the PCDI, LIHC patients  

were categorized into low- and high-PCDI  

groups based on the specified PCD index cut-off 

calculated by survminer R package. Kaplan-Meier 

analysis indicated that those in the low PCDI category 

exhibited superior overall survival rates in both the 

TCGA and GEO datasets (P<0.05). Moreover, a 

heightened PCDI corresponded with shorted survival 

duration and diminished survival rates (Figure 4A–

4C). We crafted time-dependent ROC curves in R  

to gauge the prognostic model’s predictive accuracy  

for both cohorts, evaluating the AUC at multiple 

intervals. The PCDI displayed robust reliability and 

prognostic potential, as the ROC curve demonstrated. 

In the training set, the 1-year AUC registered at  

0.825, 3-year at 0.786, and 5-year at 0.744 (Figure 

4D). For the validating GEO datasets, the 1-year  

AUC surpassed 0.6, 3-year exceeded 0.58, and the  

5-year went beyond 0.6 (Figure 4E, 4F). Univariate 

Cox assessment highlighted an association between 

reduced survival and factors like pathological stage, 

pathological T, M stage, and elevated PCDI (Figure 

4G). Conversely, the multivariate Cox assessment 

determined that solely the PCDI stood out as an 

independent prognostic determinant with a p-value 

below 0.001 (Figure 4H). 

 

PCD associated immune landscapes at bulk and two-

dimensional spatial levels 

 

Checkpoints and relevant modulators are considered as 

regulators in activation of immune cells in TME, thus 

we investigated the expression of immunomodulators 

engaged in infiltration of immune cells. We initially 

analyzed the correlation between immunomodulators 

and PCD index. Surprisingly, we discovered that  

low PCDI is positively associated with antigen 

presentation and receptors, whereas high PCDI is 

positively associated with co-inhibitors (CD276 and 

VTCN1) and ligand (TGFB1 and VEGFA) (Figure 

5A). This indicates that a high PCDI might correlate 

with a pro-tumor microenvironment. Our hypothesis 

was confirmed by the GO and KEGG enrichment 

results. We observed that all signatures associated with 

immune response, including the humoral immune 

response, innate immune response, and adaptive 

immune response, were significantly downregulated  

in group with elevated PCDI. Conversely, aspects like 

the cell cycle and the Hippo signaling pathway saw 

increased activity in this group (Figure 5B, 5C). In line 
with this, Hallmark pathway enrichment highlighted the 

activation of pathways linked to therapy resistance and 

cancer cell invasion, such as MITOTIC SPINDLE, E2F 
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Figure 3. Development of a reliable programmed cell death index (PCDI). (A) A comparison of the AUC values for various models 
and the AUC of the final PCDI is presented. (B) Box plots demonstrate the correlation between PCDI and clinical features such as Grade, 
Stage, and T. (C) Heatmap displays the expression of PCD genes in the model. (D) Venn diagram illustrates the overlap of enriched hallmark 
pathways in three datasets (TCAG, GSE144269, and GSE76427). (E) Correlation analysis of genes within the HALLMARK_MYC_TARGETS_V1 
pathway. 

9055



www.aging-us.com 10 AGING 

 
 

Figure 4. Evaluation of exogenous datasets to assess the accuracy and independence of PCDI. (A–C) Kaplan-Meier analysis of 

overall survival rates in high- and low-PCDI groups, indicating superior prognoses for patients with low PCDI scores compared to those with 
high PCDI scores. Additionally, the distribution of PCDI based on survival status and time is demonstrated in the three datasets (TCGA, 
GSE14520, and GSE144269). (D–F) Time-dependent ROC curve analysis of TCGA, GSE14520, and GSE144269 datasets. (G) Univariate Cox 
regression analysis revealing a significant correlation between PCDI and prognosis. (H) Multivariate Cox regression analysis confirming that 
PCDI can serve as an independent prognostic factor. 
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Figure 5. Exploration of the potential mechanism of PCDI. (A) Bar plot illustrating the correlation between immunomodulators and 
PCDI in the TCGA dataset. (B) GO enrichment analysis of immune response-related pathways in the two PCDI groups. (C) KEGG enrichment 
analysis of immune response-related pathways in the two PCDI groups. (D) Gene set enrichment analysis (GSEA) highlighting hallmark 
pathways in the two PCDI groups. (E) Correlation analysis between the fraction of activated Mast cells calculated by CIBERSORT and PCDI in 
the TCGA and GSE14520 datasets. (*P < 0.05, **P < 0.01, and ***P < 0.001 determined by Wilcoxon test). 
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TARGETS, G2M CHECKPOINT, MYC TARGETS 

V1, MTORC1 SIGNALING and EPITHELIAL 

MESENCHYMAL TRANSITION pathways were 

activated in high PCDI group (Figure 5D). Additionally, 

we observed a significantly higher PCDI score in the C2 

group compared to the C1 group (Supplementary Figure 

3A). Therefore, we hypothesize that the high PCDI 

group possesses immune characteristics consistent with 

those of the C2 group. To validate this hypothesis, we 

first computed the expression levels of interleukins  

and interferons in the high and low PCDI groups. Our 

findings revealed that the expression of interleukins, 

interferons, and their receptors was significantly higher 

in the high PCDI group compared to the low PCDI 

group (Supplementary Figure 3B, 3C). We also obtained 

fraction of immune cells calculated by CIBERSORT by 

using TIMER2.0 web server and we only found that the 

fraction of activated mast cell was negatively correlated 

with PCDI in multiple datasets (TCGA and GSE14520) 

(Figure 5E). To verify this result, we utilized the LIHC 

spatial transcriptome dataset to calculate the PCD  

index for each spot. Initially, PCDI was computed for 

each point using the PCD model. Simultaneously, to 

validate the spatial correlation between PCDI and Mast 

cells, we employed the GSVA algorithm to calculate  

the proportion of Mast cells at each location. Through 

Pearson correlation analysis, we found a negative 

correlation between PCDI and mast cell score in tumor 

regions (Supplementary Figure 4A–4C). This implies that 

mast cells may be inhibited in samples with high PCDI.  

 

Taken together, these results provide a potential 

rationale for the decreased survival rate observed in 

high PCDI patients. 

 

Elucidating pharmacotherapeutic approaches for 

LIHC patients via PCD associated genes 

 

To develop effective drug treatment strategies for LICH 

patients based on PCD features, we examined the IC50 

values of drugs in LIHC samples to detect notable 

differences. Figure 6A depicts the relationship between 

drug sensitivities and genes in PCDI. We used the 

spearman correlation coefficient to select statistically 

significant drugs (P-value < 0.05 and R > 0.25). We 

found that LIHC patients in low-PCDI group exhibited 

greater vulnerability to chemical drugs (Dactinomycin, 

Fludarabine, and Gemcitabine), cell division inhibitors 

(Docetaxel and Vinorelbine), DNA damage drugs 

(Epirubicin and Irinotecan), and platinum drugs 

(Cisplatin and Oxaliplatin), as evidenced by the higher 

IC50 of tyrosine kinase inhibitor (Sorafenib) functional 

by inhibiting angiogenesis and interfering with tumor 
cell signaling (Figure 6B). In addition, those patients 

responded better to immunotherapy drugs, as evidenced 

by the elevated TIDE score in the high PCDI group 

(Supplementary Figure 2A). Figure 6C further 

illustrates the relationship between model genes and 

established therapeutic targets in LIHC. 

 

Above all, these results indicate that liver cancer 

patients with low PCDI levels are potentially more 

responsive to immunotherapy combined with standard 

adjuvant chemotherapy treatments.  

 

PRKDC exhibits high expression in LIHC and 

enhances its proliferation, migration, and invasion 

 

To further validate the efficacy of PCD model  

as a clinically applicable tool, we conducted further 

investigations on the genes associated with PCD in  

this model. Through univariate Cox regression analysis, 

we identified that among these genes, only 15 genes 

exhibited significant correlations with the prognosis of 

LIHC (Supplementary Figure 5A). Notably, Protein 

kinase, DNA-activated, catalytic subunit (PRKDC) was 

found to be specifically associated with the progression 

of tumor grade (Supplementary Figure 5B). The 

catalytic subunit of the DNA-dependent protein kinase 

(DNA-PK) is encoded by PRKDC. This kinase is a  

vital downstream effector in HKDC1-induced GC 

tumorigenesis, reliant on lipid metabolism [23]. While 

prior research indicated that PRKDC can enhance  

cell proliferation through the activation of MTORC 

[24], and it accelerates the proliferation and metastasis 

program in glioblastoma, colorectal cancer, gastric 

cancer, non-small cell lung carcinoma, nasopharyngeal 

carcinoma and osteosarcoma [25, 26]. However, its role 

in LIHC remains underexplored. 

 

Consistent with our bioinformatic findings, expression 

of PRKDC was markedly increased in LIHC tumor 

tissues relative to normal liver samples. (Figure 7A). 

This trend persisted at the cellular level: PRKDC 

expression was consistently high across LIHC cells, 

with either Huh-7 or Hep-3B cells showcasing the  

most pronounced expression (Figure 7B). Therefore, we 

generated PRKDC knockdown models in Huh-7 and 

Hep-3B cell lines using two distinct short hairpin (sh) 

RNAs. Their efficacy was confirmed through qPCR  

and Western blot analyses (Figure 7C–7E). Notably, 

PRKDC knockdown led to a marked inhibition of cell 

proliferation in both Huh-7 and Hep-3B cells (Figure 

7F), suggesting a role for PRKDC in promoting LIHC 

cell proliferation. In line with this, the clonogenic 

capacity was diminished in PRKDC knockdown cells 

relative to their control counterparts (Figure 7G), 

hinting at PRKDC’s contribution to the unbounded 

growth potential of LIHC cells. Importantly, scratch  
and transwell migration assays revealed a decline in  

cell migration and invasion capabilities upon PRKDC 

depletion in both cell lines (Figure 7 H, 7I).  
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Figure 6. Evaluating the predictive capability of the programmed cell death index for drug sensitivity. (A) The correlation 
between the drug IC50 and PCD genes in model. (B) The correlation between the IC50 of drugs and PCDI values in patients with high- or low-
PCDI, highlighting enhanced sensitivity to standard adjuvant chemotherapy in low PCDI LIHC patients. (C) The association between model 
genes and established targets for the treatment of LIHC. 
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Collectively, these results underscore that PCD gene 

PRKDC fosters proliferation and invasion of LIHC, 

underlying the poor prognosis of LIHC patients with 

high-PCDI. 

 

PRKDC represses PCD, yet stimulates EMT and cell 

cycle arrest in LIHC 

 

Given that PRKDC is a PCD gene, our initial 

experiments demonstrated that its knockdown 

promotes cell death, as evidenced by trypan blue 

staining (Figure 8A, 8B). Recognizing apoptosis as  

a prominent form of PCD, we evaluated apoptosis 

markers in Huh-7 and Hep-3B cells. Notably, pro-

apoptosis markers such as cleaved caspase 3 and Bax 

were upregulated, while the anti-apoptosis marker 

Bcl-2 was downregulated in PRKDC knockdown cells. 

This pattern validates PRKDC’s role in suppressing 

PCD (Figure 8C, 8D). This inhibition of PCD 

partially elucidates the mechanism behind PRKDC-

mediated augmentation of proliferation and invasion 

of LIHC cells.  

 

 
 

Figure 7. PRKDC knockdown represses the invasiveness of LIHC cells. (A) PRKDC expression in LIHC tissues from protein atlas.  
(B) PRKDC expression in LIHC cell lines from protein atlas. (C) Expression of PRKDC mRNA in Huh-7 or Hep-3B using qPCR. (D, E) Protein level 
of PRKDC in Huh-7 or Hep-3B using WB. (F) Cell viability in PRKDC knockdown and negative control groups. (G) Clone formation assays 
between PRKDC knockdown and negative control groups. (H) Would healing assays between PRKDC knockdown and negative control groups. 
(I) Relative migration of Huh-7 or Hep-3B cells between PRKDC knockdown and negative control groups. 
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The epithelial-mesenchymal transition (EMT) is a 

hallmark of enhanced invasiveness, migratory prowess, 

therapy resistance, and stem-like characteristics in 

cancer cells-all vital for cancer progression and 

metastasis. EMT also allows cancer cells to avoid 

apoptosis and stimulate tumor progression [27]. 

Consistent with this, PRKDC knockdown led to a  

rise in epithelial Cadherin expression but a decline  

in neural-type Cadherin and Vimentin in Huh-7  

and Hep-3B cells (Figure 8E, 8F), suggesting that  

PRKDC promotes EMT process in LIHC. Furthermore, 

PRKDC knockdown induced G2/M phase arrest in the 

 

 
 

Figure 8. PRKDC knockdown induced cell death, EMT, and halted the cell cycle in LIHC. (A, B) Relative cell death percentages in 
Huh-7 or Hep-3B cells using trypan blue staining. (C, D) Protein level of apoptosis related markers in Huh-7 or Hep-3B cells. (E, F) Protein level 
of EMT related markers in Huh-7 or Hep-3B cells. (G–J) Cell cycle analysis between PRKDC knockdown and negative control groups in Huh-7 
or Hep-3B cells using flow cytometry. 
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aforementioned cells, potentially underlying the 

observed growth restraint in these knockdown cells 

(Figure 8G–8J).  

 

Overall, the combined effects of inhibiting PCD, 

augmenting EMT, and inducing cell cycle arrest 

underpin the enhanced proliferation and invasiveness 

seen in LIHC cells. This likely contributes to the poor 

prognosis observed in LIHC patients with high-PCDI. 

 

PRKDC inhibition potentiates antitumor immunity 

and sensitizes LIHC to chemotherapy and targeted 

therapy  

 

Our preliminary bioinformatic analyses suggest that 

patients exhibiting high PCDI show resistance to both 

chemotherapy and targeted therapy. Echoing this, 

knocking down PRKDC made Huh-7 and Hep-3B cells 

more responsive to Gemcitabine (a chemotherapeutic 

agent) and Sorafenib (a targeted therapeutic agent) 

(Figure 9A, 9B). This implies that PRKDC could be a 

potential sensitizing target for chemotherapy or targeted 

therapy in patients with high PCDI. 

 
Importantly, our bioinformatic data implies a pro-

tumoral microenvironment in patients with pronounced 

PCDI. Previous studies revealed that chemokines such 

as CCL2, CCL4, CCL5, CLCX1, CLCX8 and CLCX10 

are important for global recruitment of immune cells 

[28]. In our study, ELISA and qPCR results further 

illuminated that the knockdown of PRKDC augmented 

the concentration and expression of cytokines, 

encompassing CCL2, CCL4, CCL5, CLCX1, CLCX8, 

and CLCX10, in the cell microenvironment (Figure 9C, 

9D), lending weight to our bioinformatic findings. To 

define if PRKDC restrains infiltration of CD8+ T cells, 

we performed CD8+ T cell migration assay. The results 

indicated that PRKDC depletion potentiated CD8+ T 

permeation through the polycarbonate membrane 

(Figure 9E, 9F). Further, we co-cultured Huh-7 or  

Hep-3B cells with T cells to define PRKDC function  

in T cell-mediated antitumor immunity. Notably, the 

results showed that PRKDC knockdown heightened  

the sensitivity of Huh-7 and Hep-3B cells to CD8+  

T cell-secreted IFN-γ (Figure 9G). Moreover, PRKDC 

knockdown not only decreased cell viability of Huh-7 

or Hep-3B cells, but also amplified T cell-mediated 

cytotoxicity in both LIHC cell lines. These results 

suggest that PRKDC depletion increases the infiltration 

and antitumor effects of T cells (Figures 9H, 9I).  

 
Together, PRKDC appears pivotal in LIHC cells’ 

resistance to chemotherapy and targeted treatments and 

fosters an immunosuppressive tumor microenvironment 

deterring antitumor immunity. As such, targeting 

PRKDC emerges as a potential avenue for optimizing 

chemotherapy, targeted therapy, and immunotherapy in 

LIHC patients characterized by high PCDI. 

 

DISCUSSION 
 

The intricate and multifaceted relationship between 

programmed cell death (PCD) genes and liver 

hepatocellular carcinoma (LIHC) prognosis is an 

emerging research focus [29]. According to prior 

research, the role of cell death in antitumor immunity 

appears to be paradoxical [30]. Furthermore, the 

connection between cell death and TME, as well as  

its impact on TCA cycle, OXPHOS, and fatty acid 

metabolism, is intricately intertwined with antitumor 

immunity [31, 32]. In our study, a comprehensive 

approach was applied to discern this relationship, 

yielding findings that both underscore the pivotal  

role of PCD genes in LIHC prognosis and tumor 

microenvironment, and pave the way for potential 

immunotherapy, chemotherapy, and targeted therapy. 

 

We initially discovered 815 differentially expressed 

PCD genes in the TCGA-LIHC dataset. Interestingly, 

a subset of 45 genes showcased consistent expression 

patterns across multiple liver cancer datasets. This 

strengthens the hypothesis that these genes play a  

non-negligible role in liver cancer progression and 

might be foundational for further investigation. The 

pathways they are involved in, like the mTOR and 

JAK-STAT signaling pathways, were implicated in 

various malignancies, attesting to their importance [33, 

34]. One of the primary endeavors of our research was 

the development of a novel classification system for 

LIHC based on cell death-related genes. Our findings 

yielded two distinct clusters of patients. Strikingly, the 

two clusters had markedly different survival outcomes, 

with cluster 1 indicating a better prognosis compared to 

cluster 2. The underlying molecular mechanisms seem 

to revolve around differing pathways, while cluster 1 

predominantly exhibited metabolic and complement 

pathways, cluster 2 was enriched in pathways linked  

to tumor progression. These molecular differences hint 

at potential therapeutic strategies tailored for each 

subgroup.  

 

Hitherto, notable advancements have occurred in 

immuno-oncology, including the evolution of 

treatments like CPIs and CAR T cell therapy. These 

advancements hold great promise for overcoming 

tumors by activating the body’s own immune system 

[35]. However, there are still many patients who do 

not experience significant benefits from immuno-

therapy. Therefore, we investigated the response of 

these groups of patients to immunotherapy. The 

effectiveness of immunotherapy is well-established 

and involves multiple factors within a complex 
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network. One crucial factor that influences 

immunotherapy efficacy is the TME, which is 

influenced by the presence and composition of  

tumor-infiltrating immune cells [36, 37]. These 

elements are pivotal in bolstering antitumor immunity. 

Notably, the C2 group, which was associated with a 

poorer prognosis, exhibited a more immune-activated 

microenvironment. One possible explanation is that 

the proportion of regulatory T (Treg) cells  

within group C2 is significantly higher than that 

within group C1, which indicates an abundance of 

immunosuppressive cells. As a distinct subset of T 

cells, Treg cells can dampen immune responses against 

foreign or self-antigens by suppressing effector T 

cells, mast cells, dendritic cells, and B cells, thereby 

maintaining immune tolerance within the body [38].  

 

 
 

Figure 9. PRKDC knockdown sensitizes Huh-7 and Hep-3B to chemotherapeutic and immunotherapeutic agents. (A) Dose 
response curves of Gemcitabine. (B) Dose response curves of Sorafenib. (C, D) Chemokines including CCL2, CCL4, CCL5, CLCX1, CLCX8 and 
CLCX10 are detected using ELISA and qPCR. (E, F) Schematic representation of the CD8+ T cell migration experiment, along with the 
comparative migration of CD8+ T cells between the PRKDC knockdown and the control groups. (G) Dose response curves of IFN-γ in Huh-7 
and Hep-3B co-cultured with CD8+ T cells. (H, I) Comparison of T cell-induced tumor cell death between PRKDC-silenced and control groups in 
Huh-7 or Hep-3B cells. (*P < 0.05, **P < 0.01, and ***P < 0.001 determined by two-way ANOVA test). 
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This observation is further corroborated by the cell 

proportion results calculated using CIBERSORT. 

 

This notion is reinforced by the elevated expression  

of immune checkpoints in the C2 group, hinting at a 

more positive reaction to immune checkpoint inhibitors. 

Moreover, the C2 group exhibited a more pronounced 

presence of pro-tumor immune cells like resting 

myeloid dendritic cells and regulatory T cells (Tregs). 

In contrast, cluster 1 was characterized by a higher 

presence of anti-tumor immune cells such as naïve B 

cells, activated mast cells, and monocytes. 

 

This was echoed in the increased levels of immune 

checkpoints in the C2 group, suggesting a more 

favorable reaction to ICIs. Additionally, the C2 group 

exhibited a more pronounced presence of pro-tumor 

immune cells like resting myeloid dendritic cells and 

Tregs, whereas cluster 1 showed enriched of antitumor 

immune cells, such as B cell naïve, mast cell activated, or 

monocyte. This observation, to some extent, elucidates 

why patients in the C2 group experienced greater 

benefits from immunotherapy but had a lower survival 

rate. The implications are twofold: first, the correlation 

of PCD genes with the TME deepens our understanding 

of tumor immunology in LIHC. Second, it advocates for 

the potential benefit of immunotherapy, especially in 

patients categorized under the C2 group.  

 

The culmination of our analysis was the establishment 

of a PCD index (PCDI) for predicting patient prognosis. 

A robust predictive model was constructed using 17 

PCD genes, showcasing a potential prognostic tool  

for LIHC. Notably, high PCDI was associated with 

pathways concerning treatment resistance and tumor 

invasion. This provides potential explanations for the 

worsened prognosis seen in patients with a high  

PCDI. Furthermore, the association between PCDI and 

immune landscapes, particularly the diminished immune 

responses in patients with high PCDI and the negative 

correlation with activated mast cells, sheds light on the 

immune evasion mechanisms at play. Previous study 

has proved a connection between tumor-infiltrating 

mast cells and resistance to anti-PD-1 therapy [39]. This 

connection further underscores the intricate interplay 

between PCD and the immune microenvironment, 

suggesting the potential for combined therapeutic 

strategies targeting both these aspects in LIHC. 

Meanwhile, our exploration into pharmacotherapeutic 

approaches offers promise. By correlating PCD gene 

expression with drug sensitivities, we’ve identified 

drugs that might be more efficacious in specific  

patient subgroups, potentially guiding personalized 
therapy. In comparison to previous studies, our  

research has provided a more in-depth understanding  

of the association between PCD and the immune 

microenvironment. In comparison with previously 

published prognosis models [40], we conducted a 

comprehensive assessment of the intrinsic heterogeneity 

among patients with high and low PCD levels, 

highlighting their varying sensitivity to immunotherapy. 

Furthermore, we have identified personalized therapeutic 

strategies for drug treatment based on these insights. 

Lastly, we verified that PRKDC, seldom mentioned in 

prior cancer studies, correlated with poorer survival 

outcomes in LIHC patients [24]. Furthermore, elevated 

PRKDC levels notably enhanced the proliferation  

and invasive capabilities of LIHC, suggesting it as a 

potential therapeutic target for this condition. 

 

While the PCD model demonstrates strong  

predictive capabilities and PRKDC plays a key role  

in the resistance of LIHC cells to various treatments, 

including chemotherapy and targeted therapies, as well 

as in creating an immunosuppressive environment that 

hinders anti-tumor immune response, it is important to 

acknowledge certain limitations in this study. The ability 

of the PCDI to forecast outcomes of immunotherapy is 

initially based on estimates generated by the submap 

algorithm, and the precision of the PCDI requires 

validation using real-world LIHC immunotherapy data-

sets. Additionally, it is essential to conduct further in 

vivo experiments to elucidate the molecular mechanisms 

that connect PRKDC with tumor progression. 

 

CONCLUSIONS 
 

Collectively, this comprehensive study delineates the 

profound interplay between programmed cell death 

genes, the immune landscape, and liver cancer prognosis. 

By identifying crucial genes and pathways, categorizing 

patient subgroups, and suggesting promising therapeutic 

approaches, our results inform a roadmap for future 

research and therapeutic interventions in LIHC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Profiles of programmed cell death (PCD) genes in LIHC patients. (A) A volcano plot illustrates the 

expression differences of PCD-related genes in LIHC, with blue representing down-regulated genes, red for up-regulated genes, and grey for 
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those without significant change. (B) A Venn diagram depicts the intersection of PCD-related DEGs and those linked to patient outcomes.  
(C) A Circos plot presents the genomic location and expression of 45 PCD genes across five datasets. (D) GO analysis of PCD-associated DEGs. 
(E) KEGG analysis centered on PCD-related DEGs. (F) Summary of mutation landscape in the TCGA-LIHC dataset. (G) Oncoplot illustrating 
genes associated with PCD in the TCGA-LIHC dataset. (H) Circos plot demonstrates the CNV of selected 45 PCD genes on the genome in TCGA-
LIHC. (I, J) Dot plot presents the results of KEGG enrichment analysis for both clusters. (K) Gene set enrichment analysis (GSEA) highlights 
hallmark pathways within each cluster. 

 

 
 

Supplementary Figure 2. Somatic diversification of two groups. (A) Comparative box plots contrasting Tumor Immune Dysfunction 

and Exclusion (TIDE) scores between C1 and C2. (B) Box plot illustrating normalized fraction level of leukocyte in C1 and C2. (C) Box plot 
showing the normalized score of intratumor heterogeneity between C1 and C2. (D) Box plot depicting the normalized score of homologous 
recombination defects in C1 versus C2. (E) Box plot presenting normalized score of BCR Shannon and Richness between C1 and C2. (F) Box 
plot contrasting normalized score of TCR Shannon and richness in C1 versus C2. (*P < 0.05, **P < 0.01, and ***P < 0.001 determined by two-
way ANOVA test). 
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Supplementary Figure 3. Immune landscape of high and low PCDI groups. (A) Comparative box plots demonstrating PCDI in C1 and 

C2 groups. (B) Comparative box plots showcasing normalized expression levels of interferons and their receptors in two groups.  
(C) Comparative box plots demonstrating normalized expression levels of interleukins and receptors in two groups. (*P < 0.05, **P < 0.01, 
and ***P < 0.001 determined by Wilcoxon test). 
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Supplementary Figure 4. Immune landscape of PCDI in two-dimensional spatial level. (A) PCDI score of each spatial plot in three 

LIHC spatial transcriptome samples. (B) GSVA score of mast cell of each spatial plots in three LIHC spatial transcriptome samples.  
(C) Correlation between mast cell score and PCDI in LIHC spatial transcriptome samples. 

 

 
 

Supplementary Figure 5. Clinical correlation of PCD genes. (A) Univariate Cox regression analysis of PCD associated genes in PCDI.  

(B) The expression of PRKDC in G1/G2 and G3/G4 stage. 
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