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INTRODUCTION 
 

Cardiovascular diseases (CVD) cause significant health 

and economic burdens, with nearly 19 million deaths 

attributed to CVD by 2020. Acute myocardial infarction 

(AMI) is one of the most serious CVD. According to a 

report from National Health and Nutrition Examination 

Survey (NHANES) 2015 to 2018, the prevalence of 

AMI was 3.1% in the US, and the mortality was 

104,280 in 2019 [1]. In China, AMI-related mortality 

increased 5.6-fold 11.40 in 1987 to 64.25 in 2014 [2]. 

Lipid metabolic profiles have been shown to be 

abnormal in patients with AMI. Several studies have 

shown that obesity and hyperlipidemia were associated 

with a shorter life expectancy and could increase 

cardiovascular mortality and morbidity [3]. In addition, 

high serum cholesterol and free fatty acids (FFA) are 

risk factors of cardiovascular disease and independent 

risk factors for cardiovascular death [4]. Excessive low 

density lipoprotein cholesterol (LDL-C) builds up in 

arteries as plaques, resulting in increased risk of AMI. 

All patients who have experienced AMI should use 
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ABSTRACT 
 

Background: Acute myocardial infarction (AMI) is associated with high morbidity and mortality, and is 
associated with abnormal lipid metabolism. We identified lipid metabolism related genes as biomarkers of 
AMI, and explored their mechanisms of action. 
Methods: Microarray datasets were downloaded from the GEO database and lipid metabolism related genes 
were obtained from Molecular Signatures Database. WGCNA was performed to identify key genes. We 
evaluated differential expression and performed ROC and ELISA analyses. We also explored the mechanism of 
AMI mediated by key genes using gene enrichment analysis. Finally, immune infiltration and pan-cancer 
analyses were performed for the identified key genes. 
Results: TRL2, S100A9, and HCK were identified as key genes related to lipid metabolism in AMI. Internal and 
external validation (including ELISA) showed that these were good biomarkers of AMI. In addition, the results 
of gene enrichment analysis showed that the key genes were enriched in inflammatory response, immune 
system process, and tumor-related pathways. Finally, the results of immune infiltration showed that key genes 
were concentrated in neutrophils and macrophages, and pan-cancer analysis showed that the key genes were 
highly expressed in most tumors and were associated with poor prognosis. 
Conclusions: TLR2, S100A9, and HCK were identified as lipid metabolism related novel diagnostic biomarkers of 
AMI. In addition, AMI and tumors may be related through the inflammatory immune response. 
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statins to reduce LDL-C. These findings indicate that 

lipid metabolism plays a key role in the occurrence and 

prognosis of AMI. 

 

Regulation of lipid (fatty acid and cholesterol) 

metabolism is essential for maintaining cell homeostasis, 

and abnormal lipid metabolism is a key feature of cancer 

[5]. Recent studies showed that cancer cells regulated 

lipid metabolism through intracellular carcinogenic 

signals and the tumor microenvironment. Moreover, 

abnormal lipid metabolism altered carcinogenic signaling 

pathways in cancer cells and promoted proliferation, 

survival, invasion, and metastasis of cancer cells [5]. 

Other studies have shown that the fatty acid transporters 

CD36, SLC27, and FABPs were up-regulated in cancers 

[6]. A study showed that CD36 was associated with poor 

prognosis of breast cancer, ovarian cancer, gastric cancer, 

and prostate cancer [7]. Low density lipoprotein receptors 

(LDLRs) were positively correlated with poor prognosis 

of small cell lung cancer, breast cancer, and pancreatic 

cancer [8]. 

 

In this study we found that abnormal lipid metabolism 

was a feature of coronary heart disease (especially 

AMI) and tumors. We evaluated the role of lipid 

metabolism related genes in onset and progression  

of AMI using bioinformatics analysis. We identified 

key genes as novel diagnostic biomarkers of AMI. 

Finally, we performed pan-cancer analysis to explore 

the expression and role of lipid metabolism related 

genes in tumors to identify possible relationships 

between AMI and tumors. 

 

MATERIALS AND METHODS 
 

Data collection 

 

Acute myocardial infarction-related microarray data 

were downloaded from GEO database (http://www.

ncbi.nlm.nih.gov/geo/). Lipid metabolism related genes 

were obtained from Molecular Signature Database 

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).  

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

Weighted gene co-expression network analysis is a 

systems biology method for describing the correlation 

patterns among genes across microarray samples [9]. 

We analyzed GSE66360 using the WGCNA R package 

to find gene modules related to AMI. Then, genes 

closely related to AMI were selected as potential target 

genes for subsequent analysis. Genes with absolute gene 

module membership > 0.8 and gene trait significance  

> 0.2 were intersected with genes related to lipid 

metabolism, and were identified as hub genes. 

Identification and validation of key genes in AMI 

 

Using WGCNA analysis we identified hub genes  

that played important roles in development of AMI.  

The network of co-expression of these genes was 

constructed using STRING (https://cn.string-db.org/). 

We then identified key genes using cytoHubba,  

a plug-in of Cytoscape software. We verified the 

expression and diagnostic efficacy of key genes in AMI 

using differential expression and receiver operating 

characteristic (ROC) curve analysis. 

 

Patient samples and ethics statement 

 

Ten patients with AMI and 5 healthy controls who 

visited the department of emergency in the Second 

Hospital of Hebei Medical University from January  

to June 2022 were enrolled as the external validation 

cohort after obtaining approval from the Institute  

Ethics Committee (Research Ethics Committee of  

the second hospital of Hebei Medical University,  

2021-R495). Informed consent was obtained from all 

participants. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

Double antibody sandwich ELISA was performed. 

Human anti-TLR2 (E-AB-13835, Elabscience), anti-

S100A9 (E-AB-40316, Elabscience), and anti-HCK (E-

AB-14119, Elabscience) were coated on the enzyme 

plate. For detailed experimental steps, refer to previously 

published articles and product instructions. When the 

chromogenic substrate (TMB) was added, horseradish 

peroxidase causes the TMB solution to turn blue,  

and the solution turns yellow after addition of the 

termination solution. A microplate reader was used  

to measure the OD value at 450 nm. The concentrations 

of TLR2, S100A9, and HCK were proportional to the 

OD450 values.  

 
Gene enrichment analysis  

 

After obtaining hub genes and key genes, we  

explored their possible mechanisms of action  

using gene enrichment analysis. We performed GO,  

KEGG, Hallmark analysis, and Metascape analysis 

(http://metascape.org/gp/index.html#/main/step1). Gene 

set enrichment analysis (GSEA) was performed using 

GSEA software (http://software.broadinstitute.org/gsea/).  

 
Immune infiltration analysis 

 

Single-sample gene set enrichment analysis (ssGSEA) 

and quanTIseq immune infiltration were performed to 

estimate the proportion of immunocytes in AMI and the 

relationship of these immunocytes with key genes. The 
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degree of immune cell infiltration was quantified using 

enrichment scores calculated using the GSVA (gene set 

variation analysis) package in R. Spearman correlation 

analysis was used to evaluate the relationship between 

expression levels of key genes and immunocyte and 

immunological processes.  

 

Pan-cancer analysis 

 

We downloaded sequencing data from 34 tumor  

types from TCGA (https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga). 

Sequencing information from the corresponding  

normal tissues was obtained from the GETx database 

(https://gtexportal.org/). The R language was used for 

data standardization prior to data merging. Expression 

levels of key genes were extracted from the data. 

Wilcoxon analysis was performed to compare differences 

in expression between tumors and corresponding normal 

tissues. We also collected data regarding survival  

time and survival status of patients with tumors. Cox 

regression analysis was used to evaluate the influence  

of key genes on prognosis.  

 

Statistical analysis 
 

Results are shown as the mean ± standard deviation. 

Levels of key genes levels in AMI vs. control  

tissues were compared using the Wilcoxon signed- 

rank test. Spearman’s rank test was used to assess 

correlation between expression levels of key genes and 

immunocyte and immunological processes. The ROC 

curve was used to estimate the diagnostic value of key 

genes. Statistical analyses were performed using SPSS 

24.0 (IBM), GraphPad Prism 8, and R 4.0.1. P < 0.05 

was considered statistically significant. 

 

Data availability statement 

 

Publicly available datasets were analyzed in this study. 

All the raw data used in this study are available in the 

public GEO database (https://www.ncbi.nlm.nih.gov/geo/; 

Accession numbers: GSE66360, GSE48060, and GSE 

60993).  

 

RESULTS 
 

Workflow diagram and RNA microarray profiles 

collection  
 

The workflow diagram for our study is shown in 

Figure 1. Three RNA expression datasets (GSE66360, 

GSE48060, and GSE60993) were downloaded from 

GEO, which platform were GPL570, GPL570, and 

GPL6884 sequentially. GSE66360, which included 49 

patients with AMI and 50 healthy controls, selected as 

the test cohort. GSE48060 included 31 patients with 

AMI and 21 healthy controls and GSE60993 included 

17 patients with AMI and 7 controls, and were used as 

validation sets (Table 1). 10 patients with AMI and 5 

controls visiting the department of emergency in the 

Second Hospital of Hebei Medical University from 

January to June 2022 were enrolled as the external 

validation cohort. 

 

 
 

Figure 1. Flowchart of this study. 
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Table 1. Base situation of data sets. 

Data set AMI Control Platform 

GSE66350 49 50 GPL570 

GSE48060 31 21 GPL570 

GSE60993 17 7 GPL6884 

 

Identification of hub genes related to lipid 

metabolism in AMI 

 

Weighted correlation network analysis (WGCNA) is a 

systematic biological method performed to screen genes 

associated with clinical features between different cases. 

It is an effective means of identification of biomarkers. 

We used GSE66360 to conduct WGCNA. Pearson’s 

correlation matrices and average linkage were computed 

for each pair-wise gene. We then constructed a weighted 

adjacency matrix using a power function. The soft-

thresholding parameter β was 12.087 (Figure 2A). To 

identify gene modules according to their expression 

profiles, average linkage hierarchical clustering was 

performed using the topological overlap matrix (TOM) 

based dissimilarity measure on a module with a 

minimum of 30 genes. We set the sensitivity of the 

module to 3 and merged the modules with distances less 

than 0.25. Eleven co-expression modules were obtained 

(Figure 2B). The relationships between modules and 

clinical phenotypes (AMI and control groups) resulted 

in identification of the dark grey module, with a 

coefficient of correlation of 0.6 and P-value of 6.9e-11 

(Figure 2C, 2D). In accordance with the cut-off criteria 

(MM > 0.8, GS > 0.1, weight coefficient >0.1), 113 

WGCNA-related genes with good connectivity were 

identified in the dark grey module. We then screened 

1,996 genes related to lipid metabolism using the 

Molecular Signatures Database. Finally, we found  

that 28 hub genes identified in WGCNA were lipid 

metabolism-related genes (Figure 2E). 

 

Functional enrichment analysis of hub genes set  

 

To illustrate hub genes, we used GO, KEGG, and 

hallmark enrichment analyses. Supplementary Figure 

1A–1C shows the top ten enriched GO terms. Hub genes 

were mainly enriched in lipid metabolism (response to 

lipid, response to lipopolysaccharide, cellular response to 

lipopolysaccharide) and inflammatory response (response 

to molecule of bacterial origin, response to bacterium, 

cellular response to molecule of bacterial origin) in  

BP. Hub genes were enriched in secretory granule, 

secretory vesicle, cytoplasmic vesicle membrane, ve- 

sicle membrane, whole membrane, plasma membrane  

part, integral component of plasma membrane, and 

tertiary granule membrane in CC. Hub genes were 

enriched in lipid metabolism (lipopolysaccharide binding, 

lipopolysaccharide receptor activity, lipopeptide binding) 

and immune responses (signaling pattern recognition 

receptor activity, pattern recognition receptor activity, 

Toll-like receptor binding) in MF. Hub genes were 

primarily enriched in fat digestion and absorption,  

B cell receptor signaling pathway, IL-17 signaling 

pathway, rheumatoid arthritis, cholesterol metabolism, 

and phagosome pass in KEGG analysis (Supplementary 

Figure 1D). Moreover, hub genes were enriched in 

inflammatory response (TNFα signaling via NF-κB, 

Complement, IL6 jak stat3 signaling) and lipid 

metabolism (bile acid metabolism, fatty acid metabolism) 

in hallmark analysis (Supplementary Figure 1E). 

 

Metascape integrates data from more than 40  

biological information databases to allow for 

identification of potential mechanisms of hub genes. 

The results of Metascape analysis showed that hub 

genes were mainly enriched in lipid metabolism 

(response to lipopolysaccharide, response to fatty acid, 

lipid localization), inflammatory response related path-

ways (regulation of interleukin-6 production, cellular 

response to cytokine stimulus, regulation of cell-cell 

adhesion), and immune-related pathways (regulation  

of phagocytosis, phagocytosis, response to interferon-

gamma) (Supplementary Figure 2A, 2B). 

 

Construction of a PPI network and selection key 

genes  

 

We established 28 hub genes and used the STRING 

database Version 11.5 (https://cn.string-db.org/) to 

construct a PPI network (Figure 3A). The network of 28 

genes was analyzed using Cytoscape to calculate the top 

3 genes ranked by MCC. As seen in Figure 3B, TLR 2, 

S100A9, and HCK were the top 3 key genes selected 

for further analysis. 

 

Internal and external validation of key genes 

 

GSE66360 was used as the internal cohort to evaluate the 

expression and diagnostic value of key genes. As shown 

in Figure 4A–4I, the expression levels of key genes  

were higher in AMI than those in the control group.  

To estimate the diagnostic value of TLR2, S100A9,  

and HCK, the areas under ROC curves (AUC) were 

calculated. Figure 5A–5C and Table 2 show the AUC for 

TLR2 was 0.853 (95% CI, 0.778–0.929, p = 0.000), 
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0.839 for S100A9 (95% CI, 0.758–0.920, p = 0.000), 

0.705 for HCK (95% CI, 0602–0,809, p = 0.000). These 

results showed that these key genes had good diagnostic 

value. These results were confirmed in the external 

validation cohorts (GSE60993 and GSE48060) (Figure 

5D–5I and Table 2). 

Key genes were assessed by ELISA 

 

Enzyme-linked immunosorbent assay was used to 

quantitate the expression levels of TLR2, S100A9, and 

HCK in serum. Ten patients with AMI and five controls 

were enrolled. The results showed that the levels of 

 

 
 

Figure 2. Identification of hub genes related to lipid metabolism in AMI using WGCNA. (A) Soft threshold screening. (B) Eleven 

modules shown by tree diagram. (C) Correlation heat map showed the relationship between 11 modules and groups (AMI and control). 
(D) Scatter diagram showed the correlation between the dark grey module and AMI. (E) Venn diagram showed the intersection of 113 
genes and lipid metabolism related genes. 
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Figure 3. Construction of a PPI network and selection key genes. (A) Network construction of 28 hub genes using STRING. 

(B) Identification of 3 key genes using Cytoscape software. 

 

 
 

Figure 4. Differential expression of key genes. (A–C) Differential expression of TLR2 between AMI and control in GSE66360, 

GSE60993, and GSE48060. (D–F) Differential expression of S100A9 between AMI and control in GSE66360, GSE60993, and GSE48060. (G–I) 
Differential expression of HCK between AMI and control in GSE66360, GSE60993, and GSE48060. 
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TLR2, S100A9, and HCK were significantly higher in 

the AMI group than those in the control group (Figure 6). 

 

Functional enrichment analyses of key genes set  

 

Gene set enrichment analysis was performed to determine 

the mechanisms of key genes. The significantly enriched 

terms are shown in Figure 4. Key genes were pre-

dominantly enriched in modulation of the immune and 

inflammatory responses (REGULATION_OF_INFLAM 

MATORY_RESPONSE, POSITIVE_REGULATION_ 

OF_LEUKOCYTE_MIGRATION, REGULATION_ 

OF_IMMUNE_SYSTEM_PROCESS, MONOCYTE_ 

DIFFERENTIATION, CELL_CHEMOTAXIS, 

REGULATION_OF_LEUKOCYTE_PROLIFERATION, 

and MACROPHAGE_ACTIVATION, REGULATION_ 

OF_CELL_CELL_ADHESION) by GO-BP (Figure 

7A–7C, Supplementary Table 1). They were mostly 

enriched in inflammation, immune, and tumor related 

pathways (TOLL_LIKE_RECEPTOR_SIGNALING_ 

PATHWAY, MAPK_SIGNALING_PATHWAY, 

NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY, 

FC_EPSILON_RI_SIGNALING_PATHWAY, FC_ 

GAMMA_R_MEDIATED_PHAGOCYTOSIS, and 

 

 
 

Figure 5. Receiver operating curve analysis of key genes. (A–C) ROC curve showing the diagnostic value of TLR2, S100A9, and HCK in 

GSE66360. (D–F) ROC curve showing the diagnostic value of TLR2, S100A9, and HCK in GSE60993. (G–I) ROC curve showing the diagnostic 
value of TLR2, S100A9, and HCK in GSE48060. 
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Table 2. ROC of key genes in data sets. 

Data set Key genes AUC Cut-off value Sensitivity Specificity 95% CI 

 TLR2 0.853 7.478 0.714 0.920 0.778–0.929 

GSE66360 S100A9 0.839 9.246 0.776 0.820 0.758–0.920 

 HCK 0.705 6.893 0.571 0.800 0.602–0.809 

 TLR2 0.725 10.387 0.762 0.645 0.581–0.869 

GSE48060 S100A9 0.757 13.183 0.714 0.806 9.621–0.893 

 HCK 0.724 9.965 0.857 0.548 0.582–0.865 

GSE60993 TLR2 0.849 7.857 0.647 1.000 0.694–1.000 

 S100A9 0.761 15.014 0.765 0.867 0.543–0.978 

 HCK 0.840 11.604 0.648 1.000 0.678–1.000 

 

PATHWAYS_IN_CANCER) via KEGG analysis 

(Figure 7D–7F, Supplementary Table 1). Moreover, 

these genes were enriched in inflammatory response, 

apoptosis, and tumor (IL6_JAK_STAT3_SIGNALING, 

TNFA_SIGNALING_VIA_NFKB, COMPLEMENT, 

APOPTOSIS, IL2_STAT5_SIGNALING, KRAS_ 

SIGNALING_UP) using hallmark analysis (Figure  

7G–7I, Supplementary Table 1). 

 

Immune infiltration in AMI and key genes 

 

We performed ssGSEA and quanTIseq immune 

infiltration analyses on the RNA expression profiles.  

In ssGSEA, infiltrating cells and processes such as 

CCR, Macrophages, Neutrophils, Parainflammation, 

pDCs, and Tfh were higher in the AMI group than in 

the control group. However, B_cells, Cytolytic_activity, 

and T_cell_co-inhibition were lower in the AMI group 

than in the control group (Figure 8). In addition, we 

showed that TLR2 was positively associated with  

aDCs and Th2_cells, S100A9 was positively associated 

with aDCs, Check-point, T_cell_co_inhibition, and 

HCK was positively associated with B_cells and 

T_cell_co_inhibition.  

Key genes were all positively correlated with  

the infiltration of Macrophages, Neutrophils, Treg,  

pDCs, HLA, CCR, inflammation-promoting, and Para-

inflammation (Figure 9A). In quanTIseq, we identified 

that the key genes were positively correlated with  

the infiltration of Macrophages_M2, Neutrophils, and 

negatively correlated with T_cell_CD4, T_cell_CD8 

(Figure 9B). 

 

Pan-cancer analysis of key genes 

 

Using pan-cancer analysis, we found that TLR2 was 

highly expressed in most tumors and survival analysis 

also showed this key gene was closely related to poor 

prognosis of some tumor types, such as LGG (Lower 

Grade Glioma), THYM (Thymoma). While, TLR2 was 

negatively related to poor prognosis of LUAD (Lung 

adenocarcinoma), SKCM (Skin Cutaneous Melanoma), 

and MESO (Mesothelioma) (Figure 10A–10F). S100A9 

was highly expressed in most tumors and survival 

analysis also showed this key gene was closely related 

to poor prognosis of some tumor types, such as LGG, 

KIRC (Kidney renal clear cell carcinoma), LUAD, 

UCEC (Uterine Corpus Endometrial Carcinoma), LIHC 

 

 
 

Figure 6. Differential expression of TLR2, S100A9, and HCK using ELISA. (A) Differential expression of TLR2 between AMI and 

control. (B) Differential expression of S100A9 between AMI and control. (C) Differential expression of HCK between AMI and control. 
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Figure 7. TLR2, S100A9, and HCK enrichment analyses of BP (A–C), KEGG (D–F), and Hallmark (G–I). 

 

 
 

Figure 8. Comparison of immune infiltration cells and processes between AMI and control. 
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(Liver hepatocellular carcinoma), LAML (Acute 

Myeloid Leukemia) and UVM (Uveal Melanoma). 

While, S100A9 was negatively related to poor 

prognosis of HNSC Head and Neck squamous cell 

carcinoma), SKCM, and MESO (Figure 11A–11I). 

HCK was highly expressed in most tumors and 

survival analysis also showed this key gene was 

closely related to poor prognosis of some tumor types, 

such as LGG, and LAML. While, HCK was negatively 

related to poor prognosis of CESC, SARC (Sarcoma), 

and SKCM (Figure 12A–12F). These results suggested 

that the key genes identified in our study may be 

involved in development of AMI and in progression  

of tumors. 

 

 
 

Figure 9. Correlation among immune infiltration cells, processes, and key genes. (A) ssGSEA immune infiltration analyses. (B) 

quanTIseq immune infiltration analyses. 
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DISCUSSION 
 

Cardiovascular diseases and tumors are diseases  

that pose major threats to human health worldwide. 

Lipid metabolism plays a key role in the onset and 

progression of both diseases. Moreover, patients with 

cardiovascular diseases have a 76% increased risk of 

cancer [10]. Some studies have shown that cancer is a 

major cause of death in patients with cardiovascular 

diseases due to non-cardiovascular causes [11].  

Acute myocardial infarction is a serious disease with  

high morbidity and mortality that causes a great  

economic burden to society. Researchers have shown  

that the 30-day mortality rate of patients with AMI  

patients is 7.8% due to various acute and subacute 

complications [12]. 

In this study, we downloaded three RNA  

expression profiles from patients with AMI from  

the GEO online database, including GSE66360, 

GSE40860, andGSE60993. TLR2, S100A9, and  

HCK were identified as key genes related to lipid 

metabolism by WGCNA. Moreover, internal and 

external verification were performed to evaluate the 

diagnostic and predictive value of key genes. Then, 

we evaluated the mechanisms of development of  

AMI through enrichment and immune infiltration 

analyses. Finally, immune infiltration was mainly 

comprised of neutrophils, and recent studies have 

shown that neutrophils are critical in the tumor 

microenvironment and promote tumor development 

[13]. Therefore, we performed pan-cancer analysis of 

key genes to explore their roles in AMI and tumors.  

 

 
 

Figure 10. Pan-cancer analysis showed that TLR2 was highly expressed in most tumors (A) and its effect on prognosis (B–F). 
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The results of ELISA and bioinformatics analyses 

showed that the expression levels of TLR2, S100A9, 

and HCK were significantly higher in patients with 

AMI than those in healthy controls. Toll-like receptors 

(TLRs) could play a critical role in innate immunity 

through the NF-κB and MAPK pathways. Toll-like 

receptors recognize pathogens and induce production  

of proinflammatory cytokines and upregulate co-

stimulatory molecules within the innate immune 

system [14]. Many studies have investigated the 

expression of surface TLR2 in immune cells, including 

neutrophils, macrophages, B cells, T cells, NK cells, 

and DC cells. TLR2 signaling could benefit against 

infection through promotion of immune cell activation. 

In contrast, dysfunctional TLR2 signaling leads to 

hyperactive inflammatory responses that could be 

 

 
 

Figure 11. Pan-cancer analysis showed that S100A9 was highly expressed in most tumors (A) and its effect on prognosis (B–I). 
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detrimental in inflammatory and autoimmune diseases 

[15]. Pro-inflammatory cytokines are elevated in the 

AMI environment, and TLR2 on the surface of 

monocytes may be involved in this increase. [16]. 

Monocytes may participate in AMI pathogenesis 

through induction of the Thl-type response through 

TLR2 [17]. In this study, TLR2 was highly expressed  

in AMI, which indicating that TLR2 could play a vital 

role in inflammation and the immune response in AMI. 

 

S100A9, a multifunctional calcium-binding protein 

belonging to the S100 family, plays a significant role in 

regulating inflammatory and immune responses. Yize 

Sun [18] identified S100A9 as a promoter of macrophage 

inflammation, and blockade of S100A9 ameliorated 

reduced cardiac function [19]. Recent studies have shown 

that S100A9 was significantly upregulated in the 

myocardium immediately after ischemia, which indicated 

that S100A9 was associated with the initial response  

to ischemic injury [20]. High levels of S100A9 within 

24 h after AMI was associated with a high risk of 

adverse cardiovascular events [21]. We showed that the 

expression of S100A9 was up-regulated in patients with 

AMI using bioinformatics analysis. Therefore, S100A9 

is a biomarker for diagnosis of AMI and could be a 

potential therapeutic target for AMI. 

 

HCK, a member of the non-receptor protein tyrosine 

kinase (SFK) family, is involved in innate immune 

response and plays a vital role in phagocytosis and cell 

function [22]. HCK plays a key role in phagocytosis in 

macrophages. Defective phagocytosis could promote a 

 

 
 

Figure 12. Pan-cancer analysis showed that HCK was highly expressed in most tumors (A) and its effect on prognosis (B–F). 
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persistent proinflammatory state, resulting in impaired 

heart function. Increased expression of HCK has been 

shown in pancreatic cancer, colorectal cancer, gastric 

cancer, and other solid malignant tumors [23]. Other 

studies have shown that overexpression of HCK was 

involved in the onset, progression and prognosis of 

tumors [24]. Our results showed that HCK was 

significantly upregulated in patients with AMI, which 

was verified in validation data sets and in in vitro 

experiments. These results indicated that HCK may be 

associated with tumors and AMI. 

 

Enrichment analysis showed that the identified key 

genes were enriched in inflammatory and immune 

response-related regulation pathways, and also in tumor 

related pathways (ROS, apoptosis, KRAS pathway). 

 

In AMI, apoptotic cardiomyocytes in the infarcted area 

produce a strong inflammatory cascade. Appropriate 

inflammatory response is critical to repair of heart 

tissue, but excessive inflammation results in adverse 

ventricular remodeling and heart failure. Excessive 

inflammation is characterized by release a large 

number of DAMP-related molecules (DAMPs) from 

apoptotic cardiomyocytes, resulting in release of  

pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), 

and infiltration of abundant neutrophils into the 

infarcted area. Neutrophils are important cells in 

innate immunity, and can infiltrate coronary plaques 

and infarcted myocardium, resulting in tissue damage 

through release of matrix degrading enzymes and 

ROS. In an animal model of AMI, the average infarct 

size was reduced 43% in a group that received anti-

neutrophil treatment, which prevented neutrophil 

infiltration into the infarct area [25]. Furthermore, 

reduction of inflammatory infiltration to the infarct 

area could promote infarct healing [26]. Studies have 

shown that up-regulation of neutrophils was associated 

with mortality in AMI. Local myocardial inflammation  

and systemic inflammation have been detected in 

AMI, and many inflammatory factors, chemokines, 

and components of the complement system showed 

abnormal expression [27]. Inflammatory cells promote 

removal of necrotic cells and tissue repair by 

regulating myofibroblasts and vascular cells, but  

may also contribute to abnormal fibrotic remodeling, 

increased cardiomyocyte apoptosis, and adverse events. 

Various complex pathways were involved in regulation 

of inflammation and immune response, including 

regulation of leukocyte proliferation, chemotaxis, 

migration, and adhesion, which were enriched with  

the key genes identified in our study. Systemic 

inflammatory markers are predictors of severe adverse 
outcomes in patients with AMI. In addition, the key 

genes in this study were also enriched in ROS and 

apoptosis. Reactive oxygen species are an inevitable 

by-product of mitochondrial oxidative phosphorylation 

and an important driver of myocardial injury. Reactive 

oxygen species mediate apoptosis, activate MMPs, and 

promote increased myofibroblast content through the 

MAPK and TLR pathways, resulting in adverse events 

after AMI [28]. Apoptosis triggers the inflammatory 

cascade in AMI. 

 

The immune response is an important part of the 

inflammatory response and is mediated by immune 

cells. In this study, we conducted ssGSEA and 

quanTIseq immune infiltration analyses to evaluate 

infiltration of immune cells in AMI and with the role 

of the identified key genes in this process. The results 

showed that levels of neutrophils and macrophages 

were higher in the AMI group than those in the control 

group. Neutrophils and macrophages were positively 

associated with key genes in our study, which indicated 

that they may play an important role in the onset and 

progression of AMI. Macrophages, which develop 

from monocytes, play a central role in coronary heart 

disease, and are closely related to the inflammatory 

response, myocardial fibrosis, cell debris removal, and 

ventricular remodeling in AMI [29]. M0 macrophages 

differentiate into M1 and M2 macrophages under 

different conditions. Pro-inflammatory M1 macrophages 

release a large number of pro-inflammatory cytokines 

and chemokines to amplify the myocardial inflammatory 

cascade. Anti-inflammatory M2 macrophages inhibit 

myocardial inflammation [30]. The three key genes 

were significantly associated with macrophages. HCK, 

a key regulator of phagocytosis in macrophages, was 

closely related to M2 macrophages. Our findings 

showed that the identified key genes were important  

in immune regulation in AMI. Moreover, neutrophils 

were the primary infiltrating immune cells in AMI, 

and correlated with the identified key genes in our 

study. The role and related mechanism of neutrophils 

were important in the occurrence and development in 

AMI. 

 

Recent studies have shown an important relationship 

between neutrophils and tumors. Neutrophils are markers 

of acute inflammation, coordinate the activation and 

regulation of the adaptive immune response in  

chronic inflammation. Neutrophils are also a significant 

component of the tumor microenvironment. Studies 

have shown that neutrophils play a key role in the  

onset and progression of cancer. Tumor infiltrating 

neutrophils can maintain tumor growth through different 

mechanisms, including inhibition of T cell activation, 

promotion of genetic instability, tumor cell proliferation, 

angiogenesis, and metastasis [31]. 
 

Studies have shown that neutrophils that infiltrate into 

tumors can release matrix metalloproteinase-9 (MMP-9), 
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resulting in angiogenesis and proliferation of tumor 

cells. Neutrophils also inhibit natural killer (NK) cell 

function. Some studies have shown that transferrin 

secreted by neutrophils binds with receptors expressed 

on breast cancer cells to provide iron to accelerate 

proliferation of tumor cells. Neutrophils are also the key 

source of angiogenic growth factors and chemokines 

(such as VEGF, MMP-9 and FGF-2), and prokineticin-2 

(PROK2), which can trigger chronic angiogenesis and 

promote tumor progression. In addition, mobilization of 

neutrophils or chemokines and their receptors promote 

tumor metastasis [13]. 

 
In this study, we conducted pan-cancer analysis of key 

genes to characterize the association between AMI  

and tumors. Using TCGA database, we found that 

three key genes showed abnormally high expression in 

most cancers, which indicated they could participate in 

the biological behavior of tumors. Prognostic analysis 

showed that high expression of key genes could mediate 

poor prognosis of cancers. 

 
Interestingly, studies have shown that there may be a 

relationship between coronary heart disease and tumors 

[11]. Heart disease is one of the main non tumor causes 

of death in patients with cancer. Anthracycline drugs 

used to treat many tumors may promote myocardial 

injury and induce coronary heart disease. In contrast, 

recent epidemiological and prospective cohort studies 

indicated that patients with heart disease were more 

likely to develop tumors. Another large retrospective 

study of more than 5,000 Japanese patients with heart 

disease concluded that the incidence of cancer was four 

times higher in the heart disease group than that of the 

control group [32]. 

 
Therefore, we conducted pan cancer analysis using  

our identified key genes (lipid metabolism and AMI 

related) to understand the potential association of these 

key genes with AMI and tumors. In our study, the key 

genes were highly expressed in most tumors and were 

associated with poor prognosis. These key genes may 

serve as a bridge between AMI and tumor, and may be 

potential therapeutic targets. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Enrichment of 28 hub genes by GO (A–C), KEGG (D) and Hallmark (E). 
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Supplementary Figure 2. Enrichment of 28 hubgenes by Metascape. (A) Top 20 enrichment terms of key genes by Metascape. 

(B) Protein-protein interaction network. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Top 20 enrichment terms of key genes by GO-BP, KEGG and Hallmark. 
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