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ABSTRACT 
 

We investigated relations of depressive symptoms, antidepressant use, and epigenetic age acceleration with 
all-cause mortality risk among postmenopausal women. Data were analyzed from ≤1,900 participants in the 
Women's Health Initiative study testing four-way decomposition models. After a median 20.4y follow-up, 1,161 
deaths occurred. Approximately 11% had elevated depressive symptoms (EDS+), 7% were taking antidepressant 
medication at baseline (ANTIDEP+), while 16.5% fell into either category (EDS_ANTIDEP+). Baseline ANTIDEP+, 
longitudinal transition into ANTIDEP+ and accelerated epigenetic aging directly predicted increased mortality 
risk. GrimAge DNA methylation age acceleration (AgeAccelGrim) partially mediated total effects of baseline 
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INTRODUCTION 
 

Frequently under-recognized [1, 2], depression is a 

major contributor to the Global Burden of Diseases 

while being the most prevalent mental illness among 

geriatric populations [2]. Previous studies have 

established depression as a risk factor for age-related 

chronic conditions such as metabolic syndrome, 

diabetes mellitus, and cardiovascular disease [3]. By 

the same token, antidepressants are among the most 

widely prescribed medications in older adults [4]. 

Long-term health consequences of antidepressant use 

have not been adequately evaluated although a quarter 

of individuals prescribed antidepressants take them  

for ≥10 years [5]. Moreover, U.S. FDA guidance for 

long-term use of antidepressants relates mostly to 

Major Depressive Disorder (MDD), although a large 

percentage of antidepressant users do not meet the 

diagnostic criteria for MDD, and several classes of 

antidepressants are prescribed for other indications 

besides depression [6]. Although antidepressants can 

be effective at reducing depressive symptoms and 

potentially improving cognitive function and quality  

of life, they have been linked to side-effects such as 

weight gain, hyponatremia, reduced bone mineral 

density, tremor, sexual dysfunction, lessened general 

well-being, suicide, as well as increased risks of  

falls, fractures, and cardiovascular morbidities, with 

implications for compliance with prescribed treatments 

[4, 7]. As such, it is important to examine the separate 

and joint contributions of depression and antidepressant 

use to age-related health outcomes and their underlying 

processes.  

 

Postmenopausal women constitute a high-risk group 

for both depression and antidepressant use since 

mental illnesses – including depression – increase with 

age and predominantly affect females [2]. Evidence 

from the Women’s Health Initiative (WHI) suggests 

that depression or antidepressant use may increase  

the vulnerability of postmenopausal women to age-

related health problems including weight gain [8,  

9], diabetes mellitus [10, 11], pre-hypertension and 

hypertension [12], cardiovascular disease [8, 13], 

cognitive dysfunction [4, 14], colorectal cancer [6], 
bone loss and fracture [15], hip and knee osteoarthritis 

[16], Parkinson’s disease [17], as well as frailty [7], 

with detrimental impact on cancer survivorship [18, 

19], all-cause and cause-specific mortality [18–20] 

risks. Depression and antidepressants may be linked  

to health problems due to factors like inflammatory 

responses [21–24], neurotoxicity [25, 26], and 

epigenetic changes [27], with certain antidepressants 

potentially possessing anti-inflammatory properties [6]. 

 
Previous studies focused on health disparities have 

explored epigenetic age acceleration as a potential 

mediator for the effect of demographic (e.g., race), 

socioeconomic (e.g., education) and psychosocial 

factors – including depression – on morbidity and 

mortality risks, in general, and among postmenopausal 

women, in particular [28–30]. A mediator is often 

defined as an intermediate variable on the pathway 

between an exposure and an outcome that explains part 

of the effect of the exposure on that outcome variable. 

Accounting for this third variable often alters the total 

effect (TE) between the exposure and the outcome 

leading to an attenuation of the TE towards the null,  

a phenomenon known as consistent mediation [31–33]. 

In other instances, the TE becomes biased away from 

the null value, a phenomenon known as inconsistent 

mediation [31–33]. More generally, a mediator is 

influenced by the exposure and is on the causal pathway 

between the exposure and the outcome [31–33]. A third 

variable can be both a mediator and a moderator and 

can also be only a moderator or neither of the two. A 

moderator interacts with the exposure of interest to alter 

the TE of the exposure on the outcome in a way that the 

effect of the exposure on the outcome differs across 

levels of that third variable [31–33]. Although several 

recent studies have examined the association between 

depression and epigenetic age acceleration [34–39], few 

also examined the use of antidepressants [38, 39]. 

 
Epigenetic clocks are biomarkers that reflect 

biological aging based on DNA methylation (DNAm) 

of cytosine phosphate guanine (CpG) sites [28]. They 

are distinct from clinical and molecular markers that 

capture more limited aspects of aging [28]. Epigenetic 

clocks have been developed that predict longevity [29] 

and are strongly correlated with chronological age 

across distinct cell, tissue, and organ types [28, 40, 

41]. Epigenetic clocks show promise in elucidating 
biological mechanisms pertaining to aging, chronic 

disease, and mortality risks [29]. Chronological age 

has been shown to increase levels of methylation in 

ANTIDEP+ and EDS_ANTIDEP+ on all-cause mortality risk in socio-demographic factors-adjusted models (Pure 
Indirect Effect >0, P < 0.05; Total Effect >0, P < 0.05). Thus, higher AgeAccelGrim partially explained the 
relationship between antidepressant use and increased all-cause mortality risk, though only prior to controlling 
for lifestyle and health-related factors. Antidepressant use and epigenetic age acceleration independently 
predicted increased all-cause mortality risk. Further studies are needed in varying populations. 
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specific regions of the genome [29]. “DNAm age” – 

also known as “epigenetic age” – represents innate 

aging processes at the cellular level which have been 

linked to functional decline with age [30]. Epigenetic 

age can be estimated using multivariable regression 

models of DNAm profiles, and a discrepancy  

between DNAm age and chronological age, known  

as epigenetic age acceleration (EAA), has been 

associated with adverse health outcomes [28–30, 41]. 

A higher “DNAm age” compared to chronological age 

suggests faster biological aging than expected [30]. 

Epigenetic age acceleration is linked to obesity, early 

menopause, Down syndrome, Werner syndrome, HIV 

infection, lung cancer, Alzheimer’s and Parkinson’s 

diseases, and is determined partly by genetic factors and 

partly by environmental, psychosocial, and behavioral 

factors [40, 41]. Two epigenetic clocks, blood-based 

Hannum (71 CpGs) and pan-tissue Horvath (353 CpGs), 

can be used to derive extrinsic and intrinsic epigenetic 

age acceleration (EEAA and IEAA) by calculating the 

difference between DNAm and chronologic ages [28, 

42]. Age-related changes in methylation of 353 CpGs 

included in the Horvath epigenetic clock, are known to 

influence DNA replication and repair, lipid metabolism, 

oxidative stress, and other processes linked to chronic 

diseases [42, 43], while epidemiologic evidence 

suggests that the Horvath estimator may predict 

cognitive function, lung function, physical strength, 

and premature mortality [42]. PhenoAge and GrimAge 

are next-generation epigenetic clocks from which EAA 

can also be estimated [29, 30]. 

 
Taken together, depression is a prevalent mental 

disorder among older populations, is linked to various 

diseases, particularly in postmenopausal women, and 

as a result may be influenced by epigenetic clocks. 

Furthermore, postmenopausal women are more likely 

than other groups to be prescribed antidepressant 

medications. Thus, depression (or elevated depressive 

symptoms, EDS) and/or anti-depressant use’s potential 

association with mortality risk may be mediated or 

potentially moderated by epigenetic clocks. Moreover, 

epigenetic clocks have been associated with increased 

mortality risk [44–46]. This positive association may 

be mediated by or moderated through depressive 

symptoms and/or through anti-depressant use. The 

interplay between elevated depressive symptoms (and/ 

or anti-depressant use), epigenetic age acceleration and 

mortality risk remains largely unknown, particularly 

among postmenopausal women. 

 
The present cohort study performed longitudinal 

analyses of existing observational data from the 

Women’s Health Initiative (WHI) ancillary study, to 

examine epigenetic age acceleration as a mediator/ 

moderator between EDS (and/or antidepressant use)  

as a primary exposure of interest and all-cause  

mortality as the outcome among postmenopausal 

women. A secondary analysis was also conducted with 

EAA as the main exposure, all-cause mortality the 

outcome of interest and potential mediators/moderators 

being elevated depressive symptoms (EDS) and/or 

antidepressant use. 

 

MATERIALS AND METHODS 
 

Data source 

 

The WHI is a long-term study focused on strategies for 

preventing heart disease, breast, and colorectal cancers 

as well as osteoporosis in postmenopausal women.  

The WHI study design, eligibility criteria, recruitment 

methods and measurement protocols are described 

elsewhere [47, 48]. Briefly, the WHI collected data on 

a multiethnic sample of postmenopausal women who 

were recruited and enrolled between 1993 and 1998 at 

40 geographically diverse clinical centers (24 states 

and the District of Columbia) in the United States. The 

WHI study received institutional review board approval 

with informed consent from all participating clinical 

centers. WHI-Clinical Trials (CTs) (n = 68,132) and 

WHI-Observational Study (OS) (n = 93,676) are two 

components of the WHI (n = 161,808). Whereas WHI-

CTs evaluated outcomes of menopausal hormone 

therapy (Hormone Therapy (HT) Trials), calcium and 

vitamin D supplementation ((CaD) Trial), and a low-

fat eating pattern (Dietary Modification Trial), the 

WHI-OS evaluated causes of morbidity and mortality 

in postmenopausal women. The main WHI studies 

occurred between 1993 and 2005, and of 150,076 

participants who were actively followed-up at the  

end of these studies, 76.9% participated in Extension 

Study 1 (2005–2010) and 86.9% of those eligible 

participated in Extension Study 2 (2010–2020) [49, 50]. 

At enrollment (1993–1998), WHI participants, 50–79 

years of age, underwent a clinical examination and 

completed the same self-administered questionnaire 

covering demographics, general health, clinical and 

anthropometric characteristics, functional status, 

healthcare behaviors, reproductive, medical, and 

family history, personal habits, thoughts and feelings, 

therapeutic class of medication, hormones, supplements, 

and dietary intake, and several of these characteristics 

were assessed at later follow-up times. 

 

Study participants 

 

We restricted this analysis to WHI participants with 

available DNAm data at enrollment (1993–1998) who 

took part in an ancillary case-control study (BA23) 

focused on identifying novel genomic determinants  

of coronary heart disease, as previously reported by 
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others [30, 41]. In this integrative genomics  

study, cases and controls had already undergone 

genome-wide genotyping at baseline as well as 

profiling of seven cardiovascular biomarkers, with 

oversampling of African American and Hispanic 

participants [51]. Specifically, a stratified, racially/ 

ethnically diverse sample of ≈ 2,200 WHI-CT 

participants with available stored serum were selected 

for analysis of DNA methylation at screening or 

annual visits [29]. At enrollment (1993–1998), blood 

samples were collected from participants, placed in 

EDTA tubes after an overnight fast, and stored at 

−80°C for processing by WHI core laboratories [29]. 

Patients with evidence of leukemia at enrollment 

(1993–1998) were excluded from these analysis [29]. 

Further details can be found under the following link: 

https://sp.whi.org/researchers/data/WHIStudies/StudyS

ites/BA23/pages/home.aspx. In brief, this sub-study 

aimed at evaluating miRNA and methylation levels in 

coronary heart disease (CHD) events in 1070 patients 

and 1070 controls. Researchers used high-throughput 

genomic techniques to assess methylation status and 

miRNA levels in circulating white blood cells. They 

also used statistical techniques, machine learning,  

and sparse predictors to identify regulators and co-

methylation modules linked to CHD. The study also 

reviewed genome-wide association studies to identify 

hundreds of molecular sub-phenotypes and CHD 

susceptibility polymorphisms. 

 

Of the available 2,200 participants, 1,900 had complete 

data on baseline EDS and/or antidepressant use, and had 

known socio-demographics, particularly age, race, and 

ethnicity. All other demographic and socio-economic 

factors as well as lifestyle and health-related covariates 

were subjected to multiple imputation, as described later. 

 

DNA methylation 

 

Illumina Infinium Human-Methylation 450 Bead Chip 

at the HudsonAlpha Institute of Biotechnology was 

used to perform analyses of DNA methylation [29]. 

Epigenetic clocks were calculated using genome-wide 

DNA methylation data that can estimate epigenetic age 

(DNAm) using the proportion of modified signal at each 

CpG site [29]. 

 

Study variables 

 

Elevated depressive symptoms, EDS 

A depressive symptoms screening algorithm previously 

developed by Burnam et al. with scores ranging between 

0 and 1 and higher scores consistent with greater  
burden of depressive symptoms were generated using  

6 items from the 20-item CES-D scale and 2 items from  

the National Institute of Mental Health’s Diagnostic 

Interview Schedule. Furthermore, we dichotomized this 

variable based on a pre-established threshold of 0.06, 

whereby WHI participants with a score >0.06 have strong 

evidence of depressive symptoms whereas those with a 

score ≤0.06 do not [52, 53]. Repeated measures of EDS 

at enrollment (1993–1998) and 3-year follow-up were 

examined to evaluate change over time. Specifically, 

women were classified as having no change (0) if their 

status did not change between enrollment (1993–1998) 

and 3-year follow-up time, an increase (or transition into 

EDS+) (+) if they were non-depressed at enrollment 

(1993–1998) and depressed at 3-year follow-up time or a 

decrease (or transition out of EDS−) (−) if they were 

depressed at enrollment (1993–1998) and non-depressed 

at 3-year follow-up. 

 

Antidepressant use, ANTIDEP 

WHI participants were instructed to bring prescription 

and non-prescription medication containers at enrollment 

(1993–1998). For medications used for >2 weeks, drug 

names and doses were entered into a medications 

database and assigned therapeutic class codes using  

the Master Drug Data Base (MDDB: Medi-Span, 

Indianapolis, IN; Medi-Span software: First DataBank, 

Inc., San Bruno, CA, USA). Antidepressant use at 

enrollment was defined as a dichotomous (‘yes’ or ‘no’) 

variable (form 44) based on the following therapeutic 

class codes used for WHI at baseline and at 3-years  

of follow-up: α-2 receptor antagonists (Tetracyclics) 

(580300), MAO inhibitors (581000), modified cyclics 

(581200), selective serotonin reuptake inhibitors 

(581600), serotonin-norepinephrine reuptake inhibitors 

(581800), tricyclic agents (582000), miscellaneous 

antidepressants (583000), antidepressant combinations 

(589900, 589980, 589985, 589987, 589990). Repeated 

measures of antidepressant use at enrollment (1993–

1998) and 3-year follow-up were examined to evaluate 

change over time. Specifically, women were classified  

as having no change (0) if their status did not change 

between enrollment (1993–1998) and 3-year follow- 

up time, an increase (or transition into ANTIDEP+) (+)  

if they were non-users of antidepressants at enrollment 

(1993–1998) and users of antidepressants at 3-year 

follow-up time or a decrease (i.e. transition out of 

ANITIDEP+) (−) if they were users of antidepressants at 

enrollment (1993–1998) and non-users of antidepressants 

at 3-year follow-up. Due to sample size limitations,  

we combined all types of antidepressants for the main 

analyses. 

 

EDS and/or antidepressant use 

A categorical variable was defined by combining  

the dichotomous variables for EDS and antidepressant 
use (ANTIDEP) as follows: [1] no EDS and no 

antidepressant use; [2] no EDS and antidepressant use; 

[3] EDS and no antidepressant use; [4] EDS and 
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antidepressant use. This variable was used to describe 

the interaction between depression and antidepressant 

use. Due to sample size limitations, a dichotomous 

version of depression and/or antidepressant use was 

defined for use in this analysis to compare women who 

had EDS or were antidepressant users to those who 

were neither depressed nor antidepressant users at 

enrollment (1993–1998) or 3 years of follow-up. 

Repeated measures of EDS and/or antidepressant use at 

enrollment (1993–1998) and 3-year follow-up was 

examined to evaluate change over time. Specifically, 

women were classified as having no change (0) if their 

status did not change between enrollment (1993–1998) 

and 3-year follow-up time, an increase or a transition 

into EDS+ or ANTIDEP+ (+) if they were either EDS− 

or non-users of antidepressants at enrollment (1993–

1998) and either EDS+ or users of antidepressants at  

3-year follow-up time or a decrease or transition out of 

EDS+ or ANTIDEP+ (−) if they were EDS+ or users of 

antidepressants at enrollment (1993–1998) and EDS− or 

non-users of antidepressants at 3-year follow-up. 

 

Epigenetic age acceleration 

We defined epigenetic age acceleration using residuals 

from regression of biological age on chronological age, 

with biological age defined according to four distinct 

epigenetic clocks, namely the blood-based Hannum 

(EEAA) and pan-tissue Horvath (IEAA) estimators 

described previously as well as next-generation 

estimators called PhenoAge and GrimAge yielding 

AgeAccelPheno and AgeAccelGrim, respectively. 

These four measures of epigenetic age acceleration have 

been previously calculated in the context of BA23 and 

are available for further analyses. 

 

Extrinsic epigenetic age acceleration (EEAA) 

The EEAA is based on 71 CpGs as well as counts of 

naïve and exhausted cytotoxic T cells, and plasma B 

cells, which are known to be associated with age in 

order to calculate Hannum’s estimator of “DNAm age” 

[29, 30]. In sum, it is a weighted average of “DNAm 

age” and WBC cell composition that vary with age.  

In this study, we used residual values of EEAA from  

a regression model involving “weighted DNAm age”  

in relation to “chronological age” [29, 30]. 

 

Intrinsic epigenetic age acceleration (IEAA) 

IEAA is based on 353 CpGs used to calculate Horvath’s 

estimator for “DNAm age” [30]. In this study, we relied 

on an estimate of IEAA calculated as a residual from 

regressing “DNAm age” on “chronological age” and 

estimated measures of WBC cell composition (naïve 

and exhausted CD8+ T cells, CD4+ T cells, plasma B 
cells, natural killer cells, monocytes, and granulocytes) 

to adjust for confounding by WBC changes in 

composition occurring with aging [29, 30]. 

AgeAccelPheno 

This next-generation measure of epigenetic age 

acceleration is based on the “PhenoAge” estimator 

derived from an algorithm that comprises 513 CpGs 

and that can predict chronological age as well as a 

composite of physiological indicators such as albumin 

and glucose [29, 30]. AgeAccelPheno was estimated 

using the residual method from a model with Age as 

the outcome. 

 

AgeAccelGrim 

This next-generation measure of epigenetic age 

acceleration is based on the “GrimAge” estimator 

derived in two stages. At the first stage, surrogates  

of pack-years of smoking and 12 plasma proteins were 

defined based on “DNAm age”. At the second stage, 

time-to-death was regressed on these surrogates. 

“GrimAge” epigenetic clock consists of 1,030 CpG 

sites that jointly predict mortality risk [29, 30]. 

AgeAccelGrim was estimated using the residual 

method from a model with Age as the outcome. 

 

Summary of the EAA measures 

Epigenetic age acceleration is defined by utilizing 

residuals from regression of biological age on 

chronological age, using four distinct epigenetic 

clocks: blood-based Hannum (EEAA), pan-tissue 

Horvath (IEAA), PhenoAge, and GrimAge. These four 

measures of epigenetic age acceleration have been 

previously calculated in the context of BA23 and are 

available for further analyses. Extrinsic epigenetic age 

acceleration (EEAA) is based on 71 CpGs and counts 

of naïve and exhausted cytotoxic T cells and plasma  

B cells, which are known to be associated with age. 

Intrinsic epigenetic age acceleration (IEAA) is based 

on 353 CpGs and is used to calculate Horvath’s 

estimator for “DNAm age.” AgeAccelPheno is a next-

generation measure of epigenetic age acceleration 

based on the “PhenoAge” estimator, which can predict 

chronological age and a composite of physiological 

indicators such as albumin and glucose. AgeAccelGrim 

is based on the “GrimAge” estimator, which consists 

of 1,030 CpG sites that jointly predict mortality risk. 

 
All-cause mortality risk 

 

Deaths were ascertained via semi-annual or annual 

follow-up with family, friends, and medical care 

providers of WHI participants, in addition to the 

National Death Index and obituaries [54]. In this study, 

participants were followed up through December 31st, 

2021, to evaluate all-cause mortality risks. Censoring 

age for those who did not experience the event of 

interest was age at baseline plus the number of years 

for the longest follow-up time, given that follow-up 

ended in December 31st, 2021. Survival time was set 
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up using baseline age for time of entry, age at event  

or censoring for time of exit (end of follow-up or loss 

to follow-up) and event (yes vs. no) for all-cause 

mortality, with the origin being baseline age. 

 

Covariates 

 

The hypothesized relationships are potentially 

confounded by socio-demographic, lifestyle and health 

characteristics that are known to be associated with 

mortality risks and may be related to EDS and/ 

or antidepressant use. Covariates collected at the 

enrollment visit included BA23 case-control status, 

socio-demographic characteristics (race (American 

Indian/Alaska Native, Asian, Native Hawaiian/Other 

Pacific Islanders, Black, White, More than one  

race, Unknown/Not reported), recoded into “White”, 

“Black” and “Others” (missing were excluded); 

ethnicity (Hispanic, non-Hispanic, Unknown/Not 

reported), education (less than high school, high 

school, some college, completed college or higher 

level), household income (<$20,000, $20,000–$49,999, 

$50,000–$99,999, ≥$100,000), marital status (Married/ 

Partnered, Single, Divorced, Widowed)), lifestyle 

characteristics (smoking status (Never Smoker, Past 

Smoker, Current Smoker), alcohol consumption  

(Non-Drinker, Former Drinker, <1 drink/week, ≥1 

drink/week), physical activity (Metabolic equivalent-

hours/week)), and health characteristics, namely,  

body mass index (BMI), comorbid conditions 

(cardiovascular disease (Yes, No), hypertension (Yes, 

No), hyperlipidemia (Yes, No), diabetes (Yes, No)), 

and self-rated health (Excellent/Very Good/Good, 

Fair/Poor)). Trained staff collected anthropometric 

data, including weight (kg) and height [55] at 

enrollment [56]. Weight was measured to the nearest 

0.1 kg on a balance beam scale with the participant 

dressed in indoor clothing without shoes, while height 

was measured to the nearest 0.1 cm using a wall-

mounted stadiometer. BMI was calculated as (weight 

(kg) ÷ (height2 (m2)) and further categorized as <25.0 

kg/m2 (underweight/normal weight); 25.0–29.9 kg/m2 

(overweight); and ≥30 kg/m2 (obese). The history of 

cardiovascular disease was defined in terms of previous 

coronary heart disease, angina, aortic aneurysm, carotid 

endarterectomy or angioplasty, atrial fibrillation, 

congestive heart failure, cardiac arrest, stroke, or 

transient ischemic attack. The history of hypertension 

was defined as self-reported diagnosis or treatment for 

hypertension or evidence of high blood pressure based 

on systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) measurements. The history of diabetes 

was defined as physician-diagnosed diabetes or use of 
diabetes medications. The history of hyperlipidemia 

was defined as using lipid-lowering medications or 

having been told of high cholesterol by a physician. 

Statistical analysis 

 

All statistical analyses were conducted using  

SAS version 9.4 (SAS Institute, Cary, NC, USA)  

for data management and STATA version 18 

(StataCorp, College Station, TX, USA) for bivariate 

and multivariable analyses. 

 

First, summary statistics included mean ± standard 

errors for continuous variables and frequencies with 

percentages for categorical variables. Kaplan-Meier 

estimates for survival probabilities were plotted 

against the 3 main baseline exposures of interest 

(baseline EDS, antidepressant use (ANTIDEP) and 

the combined baseline exposure EDS_ANTIDEP) 

across follow-up time (years) from baseline age to 

exit through censoring or event. Log-rank tests  

were conducted and other survival time descriptives 

(years) are reported along with exposure prevalence 

estimates. 

 

Second, simple and multivariable linear, multinomial 

logistic or Cox PH regression models were constructed 

to estimate β±SE, Loge of the odds ratios (OR) or 

hazard ratios (HR) with their SE, respectively. We 

examined the bivariate association of baseline socio-

demographic, lifestyle, and health characteristics with 

several alternative outcomes, namely epigenetic age 

acceleration, EDS and/or antidepressant use, as well  

as all-cause mortality risks. We further constructed 

binary and multinomial logistic regression models to 

examine the relationship of epigenetic age acceleration 

with EDS, antidepressant use as well as EDS  

and/or antidepressant use (defined as categorical and 

dichotomous variables) at enrollment (1993–1998) and 

3-year follow-up. 

 

Third, we constructed Cox regression models to 

examine the relationships of epigenetic age 

acceleration, EDS, antidepressant use as well as EDS 

and/or antidepressant use (defined as categorical  

and dichotomous variables) at enrollment (1993–1998) 

and 3-year follow-up with all-cause mortality risks, 

before and after adjustment of covariates. 

 

Fourth, we applied causal mediation analyses to 

examine the mediating and/or moderating effects of 

epigenetic age acceleration on the relationship of EDS 

and antidepressant use at enrollment (1993–1998) 

(and the combination of the two), with mortality  

risk. Specifically, med4way STATA command was 

used to estimate the mediating and/or moderating 

effect of z-transformed epigenetic age acceleration 
scores on the TE of EDS and/or antidepressant use on 

mortality risk, controlling for baseline characteristics 

[57–59]. 
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This causal mediation analysis is helpful in a 

counterfactual framework and in the context  

of observational data whereby two models are  

estimated, namely, a model for the mediator 

conditional on exposure and covariates and a model 

for the outcome conditional on the exposure, mediator, 

and covariates [57–59]. Assuming no unmeasured 

confounding and 4-way decomposition, the med4way 

command can also facilitate estimation of mediation 

but not interaction (pure indirect effect (PIE)), 

interaction but not mediation (reference interaction  

(INTREF)), both mediation and interaction (mediated  

interaction (INTMED)) and neither mediation  

nor interaction (controlled direct effect (CDE)), 

whereby the TE can be calculated as follows:  

TE = CDE+PIE+INTEF+INTMED [57]. Four-way 

decomposition parameters were estimated on the 

multiple-imputed data using Rubin’s rule to obtain 

averages of these estimates along with their Standard 

Errors and p-values. Percentages of TE accounted  

for by each of these four components were also 

estimated, though without SE or p-value, which cannot 

be directly estimated from multiple-imputed data. 

Thus, the statistical significance of the PIE in models 

where TE was statistically significant at a type I  

error of 0.05 and where PIE and TE have the same  

direction, determined consistent mediation. The degree 

to which TE was mediated with the third variable was 

determined by the percent PIE of TE. 

 

Three alternative models were tested, by incrementally 

including exogenous covariates: Model 1 (unadjusted), 

Model 2 (adjusted only for socio-demographic variables, 

including measures of socio-economic status) and Model 

3 (Model 2 further adjusted for lifestyle and health-

related factors). 

 
Fifth, to study bi-directional associations, another set 

of four-way decomposition models were conducted, 

whereby EDS and/or antidepressant use were con-

sidered as alternative mediators, while epigenetic age 

acceleration measures were the main exposures of 

interest assumed to have a positive TE on mortality 

risk. In this final set of models, the mediator equation 

was a logistic regression model given that all the 

alternative mediators were binary. 

 
Given the limited sample size, we performed  

multiple imputations (5 datasets, 10 iterations) of 

covariates after selecting the sample of interest, based 

on inclusion and exclusion criteria, as described by 

Lee and Carlin [60]. Two-sided statistical tests were 

conducted at α = 0.05. Supplementary Figure 1 shows 

a graphical depiction of the study design, focusing  

on the time frame of measures for exposure, mediator 

and outcome as well as exclusion criteria. 

RESULTS 
 

After a mean time of follow-up of 20.4 years  

(range: 0.10–28.8 years), 1,161 deaths occurred in  

the largest selected sample of 1,900 postmenopausal 

women. Thus, median survival time was 21.9 years 

with an interquartile range of 15.7–27.48 years, and 

incidence rate was estimated at 3,247 per 100,000  

P-Y (output and Stata script provided on GitHub at 

https://github.com/baydounm/WHI_EPIDGENETICC

LOCK_DEP_MORT). With proportions of 11–17% 

(Figure 1D), the associations of the 3 baseline 

exposures (EDS/ANTIDEP) with all-cause mortality 

risk is presented in Figure 1A–1C, using Kaplan-Meier 

(K-M) survival probability estimates and log-rank tests. 

Overall, only baseline antidepressant use (ANTIDEP) 

and the combined exposure (EDS_ANTIDEP) were 

significantly associated with increased all-cause 

mortality risk in this sample (Log-rank test, 1 d.f. 

(ANTIDEP): 12.5, P = 0.0004; Figure 1B; Log-rank 

test, 1 d.f. (EDS_ANTIDEP): 6.4, P = 0.012; Figure 

1C), while mortality risk was comparable between 

EDS+ and EDS− groups. 

 

Table 1 displays study sample characteristics, overall 

and their relationship with the four epigenetic age 

acceleration metrics. The mean ± SE of baseline age 

was 64.6 ± 0.2 y, 32% of the sample consisted of Black 

adults, while 65.7% were White. Hispanic ethnicity was 

self-reported by 14.8% of this sample. Over half (53%) 

were married/partnered, with 29.5% being college 

graduates and 30.0% with incomes below $20,000.  

In terms of lifestyle and health-related factors, 53.3% 

were never smokers, 15.4% were non-drinkers, Met-

hour/week was on average 10.1, while body mass index 

was 29.8 kg.m−2, with obesity screened for 43.9% of the 

sample. History of cardiovascular disease, hypertension, 

diabetes, and dyslipidemia was reported by 17.6%, 

53.3%, 23.5% and 16.3%, respectively. Around 11% of 

the sample had EDS at baseline, while 12.5% reported 

their health as fair/poor. Bivariate differences in baseline 

characteristics were found in terms of epigenetic age 

acceleration metrics, with consistently faster acceleration 

with respect to hypertension and BMI, across all four 

metrics, and in the case of diabetes for 3 of 4 metrics. 

Most notably, and unlike all other epigenetic clocks 

under study, GrimAge age acceleration was increased 

by +0.78y when comparing those with EDS vs. not at 

baseline (P < 0.010), a pattern also observed for self-

rated health (fair/poor vs. excellent/very good/good: 

+0.86 y, p < 0.010). It is worth noting that EAA metrics 

differed by race, though without a consistent pattern 

that was discerned. 

 

Table 2 presents the results of the bivariate associations 

between baseline characteristics and the key outcomes 
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or mediators, namely all-cause mortality (using Cox PH 

models) and EDS/antidepressant use at baseline (using a 

series of bivariate logistic regression models). The odds 

of EDS or combination of EDS and antidepressant use 

was reduced with advancing age, with higher education 

and income, greater physical activity, and was increased 

among current smokers, with higher BMI, and among 

those reporting fair/poor health. The latter also predicted 

antidepressant use, which was less prevalent among 

Black participants compared to their White counterparts. 

All-cause mortality (1,161 deaths by end of follow-up), 

on the other hand, was increased with age, reduced 

among Black vs. White participants, as well as among 

Hispanic vs. non-Hispanic participants, increased among 

single and widowed participants compared to their 

married/partnered counterparts, reduced with educational 

attainment and income levels, as well as physical 

activity, increased among current smokers, and in  

the presence of cardiovascular disease, hypertension, 

diabetes, hyperlipidemia and with a self-rated health as 

fair/poor (vs. excellent/very good/good). 

 

The relationship between epigenetic age acceleration 

metrics and EDS/antidepressant use measures is 

presented in Table 3, using a series of unadjusted  

and multivariable-adjusted logistic regression models. 

Among the four metrics, only AgeAccelGrim was 

associated with antidepressant use or the combination  

of EDS and antidepressant use, in both the unadjusted 

and the partially adjusted model for sociodemographic 

variables, including age, race, ethnicity, marital status, 

education and income. In contrast, antidepressant use  

or the combination of EDS and antidepressant use were 

no longer associated with AgeAccelGrim, upon further 

adjustment for lifestyle and health-related factors. 

 

Table 4 shows the main findings from a series of Cox 

PH models with incremental adjustment for covariates, 

examining the associations between epigenetic age 

acceleration metrics, EDS/antidepressant use exposures 

and the all-cause mortality outcome. In all models, 

EEAA, AgeAccelPheno, and AgeAccelGrim were 

associated with increased risk of mortality, suggesting 

that those metrics were predictive of mortality risk 

independently of sociodemographic, lifestyle, and 

health-related factors. In contrast, IEAA was only 

associated with all-cause mortality in the unadjusted 

and socio-demographic factor-adjusted models. While 

baseline EDS exposure was not associated with  

all-cause mortality, baseline antidepressant use and 

combined baseline EDS and antidepressant use were 

associated with this outcome in the unadjusted and 

socio-demographic factor-adjusted model, whereas 

antidepressant use was significantly associated with 

 

 
 

Figure 1. (A–D) Elevated depressive symptoms and antidepressant use baseline exposures vs. all-cause mortality risk, Women’s Health 

Initiative Study. Abbreviations: EDS: Elevated depressive symptoms; ANTIDEP: Antidepressant use; EDS_ANTIDEP: Elevated depressive 
symptoms and/or antidepressant use. 
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Table 1. Associations of sociodemographic, lifestyle and health characteristics with epigenetic age acceleration 
(n = 1,900) – Women’s Health Initiative. 

 Overall IEAA EEAA AgeAccel Pheno 
AgeAccel  
GrimAge 

Total: 
% or  

mean ± SE  
+0.04 ± 0.12 −0.23 ± 0.15 −0.15 ± 0.15 −0.06 ± 0.09 

  SD = 5.2 SD = 6.5 SD = 6.5 SD = 3.9 

Age (years):      

Continuous 64.6 ± 0.2 −0.002 ± 0.02 +0.012 ± 0.021 +0.006 ± 0.021 −0.003 ± 0.012 

 50–54 25.9 Ref Ref Ref Ref 

 55–69 47.0 +0.19 ± 0.28 −0.04 ± 0.36 +0.65 ± 0.36 +0.18 ± 0.22 

 70–79+ 27.1 −0.14 ± 0.32 0.16 ± 0.40 +0.16 ± 0.41 +0.15 ± 0.24 

Race:      

 White 65.7 Ref Ref Ref Ref 

 Black 32.4 +0.04 ± 0.25 −1.73 ± 0.31*** +0.93 ± 0.32** +1.35 ± 0.19*** 

 Other 1.9 −1.83 ± 0.86* −0.07 ± 1.07 +0.52 ± 1.09 +1.38 ± 0.64* 

Ethnicity:      

 Non-Hispanic 85.2 Ref Ref Ref Ref 

 Hispanic 14.8 −1.19 ± 0.33*** +2.14 ± 0.41*** +0.35 ± 0.42 −0.87 ± 0.25*** 

Marital status:      

 Married/Partnered 53.0 Ref Ref Ref Ref 

 Single 4.2 −0.29 ± 0.60 −0.97 ± 0.76 −1.28 ± 0.75 +0.36 ± 0.44 

 Divorced 19.5 −0.14 ± 0.31 −0.30 ± 0.39 +0.61 ± 0.39 +1.26 ± 0.23*** 

 Widowed 23.3 −0.52 ± 0.29 +0.27 ± 0.36 +0.12 ± 0.37 +0.92 ± 0.22*** 

Education:      

 Less than high school  11.1 Ref Ref Ref Ref 

 High school graduate 20.0 +0.48 ± 0.44 −0.51 ± 0.55 −0.68 ± 0.57 −0.72 ± 0.33* 

 Some college 39.5 +0.56 ± 0.40 −1.07 ± 0.50* −0.95 ± 0.51 −0.43 ± 0.30 

 College graduate 29.5 +0.54 ± 0.41 −2.04 ± 0.51*** −1.75 ± 0.52** −1.23 ± 0.31*** 

Household income:      

 <$20,000 30.0 Ref Ref Ref Ref 

 $20,000–$49,999 47.2 +0.29 ± 0.27 −0.49 ± 0.35 −0.81 ± 0.36* −0.51 ± 0.21* 

 $50,000–$99,999 18.4 +0.28 ± 0.35 −1.27 ± 0.44** −1.12 ± 0.45* −0.84 ± 0.27** 

 >$100,000 4.4 −0.02 ± 0.60 −1.89 ± 0.78* −1.39 ± 0.78 −1.40 ± 0.46** 

Smoking status:      

 Never 53.3 Ref Ref Ref Ref 

 Past 36.7 −0.17 ± 0.25 −0.54 ± 0.32 +0.24 ± 0.32 +2.14 ± 0.16*** 

 Current 10.0 +0.07 ± 0.40 −0.23 ± 0.51 +1.60 ± 0.51** +6.82 ± 0.26*** 

Alcohol use:      

 Non-drinker 15.4 Ref Ref Ref Ref 

 Former drinker 23.5 +0.50 ± 0.19 +0.51 ± 0.48 +0.38 ± 0.49 +1.78 ± 0.29*** 

 <1 drink/week 33.8 +0.51 ± 0.36 +0.04 ± 0.46 −0.03 ± 0.46 +0.69 ± 0.27* 

 ≥1 drink/week 27.3 +0.25 ± 0.37 −0.09 ± 0.47 −0.47 ± 0.47 +1.01 ± 0.28*** 
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Physical activity (Met-hours/week): 

Continuous 10.1 ± 0.3 −0.008 ± 0.009 −0.023 ± 0.012* −0.020 ± 0.012 −0.023 ± 0.007** 

Body Mass Index (kg/m2):      

Continuous 29.8 ± 0.1 +0.049 ± 0.019** +0.062 ± 0.024** +0.119 ± 0.024*** +0.051 ± 0.014*** 

 <25 22.6 Ref Ref Ref Ref 

 25–29.9 33.5 −0.22 ± 0.32 −0.26 ± 0.40 +0.12 ± 0.40 −0.02 ± 0.24 

 ≥30 43.9 +0.52 ± 0.30 +0.62 ± 0.38 +1.30 ± 0.38** +0.54 ± 0.13* 

Medical history:      

Cardiovascular disease:      

 No 82.7 Ref Ref Ref Ref 

 Yes 17.6 +0.51 ± 0.31 −0.23 ± 0.39 +0.81 ± 0.39* +0.34 ± 0.23 

Hypertension:      

 No 46.7 Ref Ref Ref Ref 

 Yes 53.3 +0.60 ± 0.23* +0.58 ± 0.29* +1.56 ± 0.30*** +0.75 ± 0.18*** 

Diabetes:      

 No 76.5 Ref Ref Ref Ref 

 Yes 23.5 +0.64 ± 0.27* +0.41 ± 0.35 +1.33 ± 0.35*** +0.78 ± 0.21*** 

Hyperlipidemia:      

 No 83.7 Ref Ref Ref Ref 

 Yes 16.3 +0.19 ± 0.33 +0.22 ± 0.40 −0.05 ± 0.42 -0.09 ± 0.25 

EDS at baseline:      

 No 89.1 Ref Ref Ref Ref 

 Yes 10.9 −0.38 ± 0.37 +0.80 ± 0.47 +0.34 ± 0.48 +0.78 ± 0.28** 

Self-rated health:      

 Excellent/Very good/Good 87.5 Ref Ref Ref Ref 

 Fair/Poor 12.5 +0.45 ± 0.35 +0.90 ± 0.44 +0.84 ± 0.45 +0.86 ± 0.27** 

Abbreviations: AgeAccel GrimAge: GrimAge epigenetic age acceleration; AgeAccel Pheno: PhenoAge epigenetic age 
acceleration; EDS: Elevated Depressive Symptoms; EEAA: Extrinsic Epigenetic Age Acceleration; IEAA: Intrinsic Epigenetic Age 
Acceleration; Met: Metabolic Equivalent; SD: Standard Deviation; SE: Standard Error; WHI: Women’s Health Initiative. Values 
are means ± SE or percentages for the overall sample; β coefficients ± SE from ordinary least square (OLS) bivariate models 
with outcome being each of 4 epigenetic clock metrics. Analysis was done on multiple imputed data. *P < 0.05; **P < 0.010; 
***P < 0.001 for null hypothesis that β = 0. Bolded values are when P < 0.05. 

 

Table 2. Associations of sociodemographic, lifestyle and health characteristics with baseline elevated depressive 
symptoms (EDS), antidepression use and all-cause mortality risk (n = 1,900) – Women’s Health Initiative. 

 

Mortality EDS/Antidepressant 

Loge (HR) ± SE  
1,161 deaths, median 

follow-up: 20.4 y 

EDS 
11% 

Antidepressant use, 
ANTIDEP 7.1%  

EDS  
and/or Antidepressant, 
EDS_ANTIDEP 16.5% 

Loge (OR) ± SE Loge (OR) ± SE  Loge (OR) ± SE  

Age (years):     

Continuous +0.104 ± 0.005*** −0.040 ± 0.010*** −0.007 ± 0.013 −0.022 ± 0.009* 

50–54 Ref Ref Ref Ref 

55–69 +1.04 ± 0.096*** −0.439 ± 0.169** +0.027 ± 0.218 −0.225 ± 0.146 

70–79+ +1.86 ± 0.10*** −0.619 ± 0.202** −0.045 ± 0.248 −0.319 ± 0.170 
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Race     

White Ref Ref Ref Ref 

Black −0.018 ± 0.065** +0.150 ± 0.156 −0.763 ± 0.224** −0.242 ± 0.137 

Other −0.032 ± 0.216 +0.749 ± 0.431 −1.200 ± 1.020 +0.127 ± 0.428 

Ethnicity     

Non-Hispanic Ref Ref Ref Ref 

Hispanic −0.582 ± 0.099*** +0.467 ± 0.185* +0.177 ± 0.239 +0.347 ± 0.161* 

Marital status:     

Married/Partnered Ref Ref Ref Ref 

Single +0.288 ± 0.145* +0.222 ± 0.370 −1.036 ± 0.727 −0.218 ± 0.350 

Divorced +0.029 ± 0.082 +0.317 ± 0.191 +0.396 ± 0.216 +0.254 ± 0.160 

Widowed +0.617 ± 0.069** +0.334 ± 0.179 −0.0360 ± 0.230 +0.165 ± 0.152 

Education:     

Less than high school Ref Ref Ref Ref 

High school graduate −0.139 ± 0.110 −0.616 ± 0.241* +0.473 ± 0.362 −0.307 ± 0.213 

Some college −0.174 ± 0.100 −0.640 ± 0.213** +0.435 ± 0.338 −0.372 ± 0.193 

College graduate −0.414 ± 0.106*** −0.996 ± 0.237*** 0.157 ± 0.357 −0.649 ± 0.207** 

Household income:     

<$20,000 Ref Ref Ref Ref 

$20,000–$49,999 −0.242 ± 0.068* −0.889 ± 0.166*** −0.162 ± 0.206 −0.595 ± 0.140*** 

$50,000–$99,999 −0.587 ± 0.097*** −0.770 ± 0.219*** −0.382 ± 0.276 −0.626 ± 0.186** 

>$100,000 −1.001 ± 0.186*** −1.560 ± 0.580** −0.482 ± 0.526 −1.193 ± 0.436** 

Smoking status:     

Never Ref Ref Ref Ref 

Past +0.021 ± 0.064 +0.024 ± 0.166 +0.317 ± 0.193 +0.176 ± 0.137 

Current +0.261 ± 0.097** +0.721 ± 0.217** +0.436 ± 0.288 +0.662 ± 0.192** 

Alcohol use:     

Non-drinker Ref Ref Ref Ref 

Former drinker +0.082 ± 0.096 +0.328 ± 0.231 −0.153 ± 0.277 +0.254 ± 0.196 

<1 drink/week −0.142 ± 0.092 −0.013 ± 0.228 −0.300 ± 0.264 −0.045 ± 0.190 

≥1 drink/week −0.109 ± 0.094 −0.409 ± 0.250 −0.283 ± 0.275 −0.308 ± 0.204 

Physical activity (Met-hours/week): 

Continuous −0.005 ± 0.003* −0.025 ± 0.008** −0.015 ± 0.008 −0.019 ± 0.006** 

Body Mass Index 
(kg/m2): 

    

Continuous +0.0001 ± 0.005 +0.038 ± 0.011** +0.016 ± 0.014 +0.025 ± 0.010* 

<25 Ref Ref Ref Ref 

25–29.9 −0.212 ± 0.079** +0.104 ± 0.224 +0.196 ± 0.249 +0.146 ± 0.178 

≥30 +0.074 ± 0.075 +0.588 ± 0.203** +0.143 ± −0.240 +0.367 ± 0.166* 

Medical history:     

Cardiovascular 
disease: 

    

No Ref Ref Ref Ref 

Yes +0.317 ± 0.074*** +0.225 ± 0.185 +0.145 ± 0.227 +0.200 ± 0.157 

8456



www.aging-us.com 12 AGING 

Hypertension:     

No Ref Ref Ref Ref 

Yes +0.592 ± 0.061*** +0.214 ± 0.149 +0.132 ± 0.180 +0.228 ± 0.125 

Diabetes:     

No Ref Ref Ref Ref 

Yes +0.164 ± 0.067* +0.211 ± 0.167 +0.261 ± 0.200 +0.247 ± 0.140 

Hyperlipidemia:     

No Ref Ref Ref Ref 

Yes +0.304 ± 0.078*** +0.066 ± 0.201 +0.069 ± 0.245 +0.084 ± 0.169 

Self-rated health:     

Excellent/Very 
good/Good 

Ref Ref Ref Ref 

Fair/Poor +0.329 ± 0.087*** 1.309 ± 0.171*** +0.615 ± 0.227** +1.062 ± 0.155 

Abbreviations: ANTIDEP: Antidepressant use; CI: Confidence Interval; EDS: Elevated Depressive Symptoms; EDS_ANTIDEP: 
Either EDS or ANTIDEP; Met: Metabolic Equivalent; OR: Odds Ratio; WHI: Women’s Health Initiative. Values are Loge of hazard 
ratios (HR) with SE or Loge of odds ratios (OR) with SE, from Cox PH and logistic regression models, respectively. *P < 0.05; **P 
< 0.010; ***P < 0.001 that β = 0 or Loge (HR) = 0. Bolded values are when P < 0.05. 

 

 

Table 3. Logistic regression models for elevated depressive symptoms (EDS) and/or antidepressant use at 
baseline, as predicted by estimates of epigenetic age acceleration (n = 1,900)a. 

 
Model 1 Model 2 Model 3 

Loge (OR) ± SE Loge (OR) ± SE Loge (OR) ± SE 

EDS: 

IEAA 
−0.015 ± 0.015  

P = 0.31 
−0.010 ± 0.015  

P = 0.51 
−0.016 ± 0.015  

P = 0.28 

EEAA  
+0.020 ± 0.012  

P = 0.089 
+0.014 ± 0.012  

P = 0.25 
+0.008 ± 0.012  

P = 0.52 

AgeAccelPheno 
+0.008 ± 0.011  

P = 0.48 
+0.003 ± 0.116  

P = 0.79 
−0.002 ± 0.012  

P = 0.84 

AgeAccelGrim 
+0.050 ± 0.018  

P = 0.006 
+0.042 ± 0.019  

P = 0.029 
+0.008 ± 0.024  

P = 0.75 

Antidepressant use, ANTIDEP: 

EEAA  
+0.016 ± 0.014  

P = 0.23 
+0.011 ± 0.015  

P = 0.47 
+0.007 ± 0.015  

P = 0.62 

IEAA 
+0.017 ± 0.017  

P = 0.32 
+0.016 ± 0.018  

P = 0.36 
+0.014 ± 0.018  

P = 0.42 

AgeAccelPheno 
−0.004 ± 0.014  

P = 0.76 
−0.004 ± 0.015  

P = 0.80 
−0.011 ± 0.015  

P = 0.46 

AgeAccelGrim 
+0.045 ± 0.022  

P = 0.045 
+0.057 ± 0.023  

P = 0.014 
+0.037 ± 0.029  

P = 0.20 

EDS and/or antidepressant use, EDS_ANTIDEP: 

IEAA 
+0.0004 ± 0.0122  

P = 0.97 
+0.003 ± 0.0125  

P = 0.83 
−0.002 ± 0.013  

P = 0.86 

EEAA  
+0.0142 ± 0.0097  

P = 0.14 
+0.007 ± 0.010  

P = 0.47 
+0.002 ± 0.010  

P = 0.84 

AgeAccelPheno 
+0.0016 ± 0.0104  

P = 0.87 
−0.001 ± 0.010  

P = 0.90 
−0.008 ± 0.010  

P = 0.43 

AgeAccelGrim 
+0.0434 ± 0.0156  

P = 0.005 
+0.044 ± 0.016  

P = 0.007 
+0.008 ± 0.020  

P = 0.71 

Abbreviations: AgeAccel GrimAge: GrimAge epigenetic age acceleration; AgeAccel Pheno: PhenoAge epigenetic age 
acceleration; ANTIDEP: Antidepressant use; EDS: Elevated Depressive Symptoms; EDS_ANTIDEP: Either EDS or ANTIDEP; 
EEAA: Extrinsic Epigenetic Age Acceleration; IEAA: Intrinsic Epigenetic Age Acceleration; OR: Odds Ratio; SE: Standard 
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Error; WHI: Women’s Health Initiative. aValues are Loge of Odd Ratios (OR) with SE from multiple logistic regression models 
on multiple imputed data. Main outcome are alternative measures of baseline depression, antidepressant use or a 
combination of the two (and/or) at baseline. Exposures are four epigenetic clock metrics, untransformed. Model 1 is 
unadjusted; Model 2 is adjusted for sociodemographic factors; Model 3 is Model 2 further adjusted for lifestyle and health 
characteristics. 
 

 

Table 4. Cox proportional hazard models for baseline and change in elevated depressive symptom status (EDS 
status), antidepressant use (ANTIDEP), EDS and/or antidepressant use (EDS_ANTIDEP) as well as epigenetic age 
acceleration predictors of all-cause mortality risk (n = 1,900). 

 
Model 1 Model 2 Model 3 

Loge (HR) ± SE Loge (HR) ± SE Loge (HR) ± SE 

EPIGENETIC AGE ACCELERATION, per year: 

IEAA +0.006 ± 0.006 +0.012 ± 0.006* +0.008 ± 0.006 

EEAA  +0.017 ± 0.005*** +0.020 ± 0.005*** +0.017 ± 0.005*** 

AgeAccelPheno +0.026 ± 0.005*** +0.028 ± 0.005*** +0.023 ± +0.005*** 

AgeAccelGrim +0.0676 ± 0.0073*** +0.074 ± 0.008*** +0.061 ± 0.010*** 

EDS AND/OR ANTIDEPRESSANT USE:    

BASELINE:    

EDS:    

Yes vs. No, 11% +0.000 ± 0.095 +0.057 ± 0.097 −0.069 ± 0.099 

Antidepressant use, ANTIDEP:    

Yes vs. No, 7.1% +0.372 ± 0.106*** +0.431 ± 0.107*** +0.362 ± 0.109*** 

EDS and/or antidepressant use, EDS_ANTIDEP:    

Yes vs. No, 16.5% +0.193 ± 0.077* +0.234 ± 0.077** +0.132 ± 0.080 

CHANGE: 

EDS, N = 473    

Increase vs. No change, 8.2% −0.231 ± 0.252 −0.255 ± 0.261 −0.387 ± 0.267 

Decrease vs. No change, 5.7% −0.119 ± 0.267 +0.002 ± 0.278 −0.008 ± 0.287 

Antidepressant use, ANTIDEP, N = 1,696    

Increase vs. No change, 4.1% +0.464 ± 0.144*** +0.524 ± 0.145*** +0.424 ± 0.147** 

Decrease vs. No change, 0.0% n/a n/a n/a 

EDS and/or antidepressant use, EDS_ANTIDEP, N = 462 

Increase vs. No change, 6.9% +0080 ± 0.240 +0.229 ± 0.252 +0.372 ± 0.264 

Decrease vs. No change, 9.5% +0.030 ± 0.220 −0.039 ± 0.225 −0.151 ± 0.231 

Abbreviations: AgeAccel GrimAge: GrimAge epigenetic age acceleration; AgeAccel Pheno: PhenoAge epigenetic age 
acceleration; ANTIDEP: Antidepressant use; EDS: Elevated Depressive Symptoms; EDS_ANTIDEP: Either EDS or ANTIDEP; 
EEAA: Extrinsic Epigenetic Age Acceleration; IEAA: Intrinsic Epigenetic Age Acceleration; HR: Hazard Ratio; SE: Standard Error. 
Values are Loge of Hazard Ratios (HR) with standard error (SE) from multiple Cox proportional hazards model of all-cause 
mortality, with main exposures being each of the epigenetic clock metrics (untransformed), and each of the depression 
and/or antidepressant metrics. Model 1 is unadjusted; Model 2 is adjusted for sociodemographic factors; Model 3 is Model 2 
further adjusted for lifestyle and health characteristics. Model 1 is unadjusted; Model 2 adjusted for sociodemographic; 
Model 3 is Model 2 further adjusted for lifestyle and health characteristics. Total deaths for the 3 CHANGE samples were: 254 
for change in EDS (N = 473), 1,014 for change in antidepressant use (N = 1,696) and 246 for change in either EDS or 
antidepressant use (N = 462). *P < 0.05; **P < 0.010; ***P < 0.001 for null hypothesis that Loge (HR) = 0. Bolded values are when 
P < 0.05. 
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higher mortality risk after further adjustment for 

lifestyle and health-related factors. Furthermore, 

increased use of antidepressants between baseline  

and 3-year follow-up compared to no change in use 

was linked to increased mortality risk in all three 

models, with some attenuation between models 2 and 

3 (LogeHR = +0.52 ± 0.15, P < 0.001 in Model 2 vs. 

LogeHR = +0.42 ± 0.15 in Model 3, P < 0.010). No 

association was found between change in EDS status 

between baseline and 3-year follow-up and mortality 

or combined change in EDS/antidepressant use 

between those two waves of data. It is worth noting 

that sample sizes differed among the 3 dynamic 

exposures (antidepressant use change: n = 1,696; EDS 

status change: n = 473; combined EDS and anti-

depressant use: n = 462). 

 
Causal mediation using four-way decomposition models 

was carried out on the baseline exposures and potential 

mediators/moderators in relation to all-cause mortality 

risk. In Table 5, the three exposures were baseline EDS 

and antidepressant exposures (EDS (yes vs. no); 

antidepressant use (yes vs. no); and EDS and/or 

antidepressant use (yes vs. no)), the mediators were the 

four epigenetic age acceleration metrics. The models 

were tested, unadjusted for exogenous variables (Model 

1), adjusted for socio-demographic covariates (Model 

2), and the fully adjusted model that added lifestyle and 

health-related covariates to Model 2 (Model 3). TEs 

were statistically significant for both antidepressant use 

and EDS and/or antidepressant use exposures. Those 

were largely controlled direct effects (CDE) in Models 

1 and 2. Nevertheless, a small proportion of this TE  

(TE >0, P < 0.05) was explained by AgeAccelGrim, 

most notably 10.5% of the TE in Model 2 for the 

antidepressant use exposure (PIE >0, P < 0.05), and 

19.7% of the TE (TE >0, P < 0.05; PIE >0, P < 0.05)  

in Model 2 for the combined exposure at baseline  

(i.e., EDS_ANTIDEP). In contrast, when all exogenous 

variables were adjusted for in Model 3, only the TE of 

the antidepressant use variable remained statistically 

significant and was not mediated or moderated by any 

of the epigenetic age acceleration metrics, and therefore 

was mainly composed of a CDE. 

 
In Supplementary Table 1, a similar modeling strategy 

was carried out, though in this instance, epigenetic  

age acceleration metrics were the main exposures of 

interest while EDS/antidepressant use were the key 

potential mediators/moderators. In these models, TEs 

were generally indicative of a positive association 

between epigenetic age acceleration and mortality risk, 

even after adjustment for all potentially confounding 

variables. In all these models, TEs were mainly 

composed of controlled direct effects, suggesting that 

EDS, ANTIDEP and EDS_ANTIDEP at baseline did 

not mediate or moderate the association between 

epigenetic age acceleration and mortality risk. 

 

DISCUSSION 
 

Summary of findings 

 

The study examined the impact of depressive 

symptoms, antidepressant use, and epigenetic age 

acceleration on all-cause mortality in postmenopausal 

women. Data from 1,900 participants were used to  

test associations between key exposures and outcomes. 

Bi-directional four-way decomposition models were 

conducted to examine the mediating and moderating 

roles of epigenetic age acceleration, EDS, and anti-

depressant use at baseline. After a median 20.4  

years follow-up time, 1,161 deaths occurred. Around 

11% had elevated depressive symptoms (EDS+), 7% 

were taking antidepressant medication at baseline 

(ANTIDEP+), while 16.5% fell into either category 

(EDS_ANTIDEP+). Baseline ANTIDEP+, longitudinal 

increase in ANTIDEP+ and accelerated epigenetic age 

acceleration directly predicted all-cause mortality risk. 

GrimAge age acceleration mediated part of the TEs of 

baseline ANTIDEP+ and EDS_ANTIDEP+ on all-cause 

mortality risk in sociodemographic factors-adjusted 

models, thus only prior to controlling for lifestyle  

and health-related factors (PIE >0, P < 0.05; TE >0,  

P < 0.05). 

 

Previous studies 
 

Epigenetic age acceleration has been connected  

to both MDD and depression symptoms. For  

instance, Han et al. used data from the Netherlands 

Study of Depression and Anxiety (NESDA) with a 

standard cut point (14) on the Inventory of Depressive 

Symptomology and a follow up of 4 years. They  

found significantly higher epigenetic age acceleration  

in patients with MDD (n = 319 compared to controls  

n = 811) [61]. Although no additional associa- 

tions between increased epigenetic age acceleration  

and cumulative clinical features were found, their  

data suggested that more advanced epigenetic age 

acceleration in MDD may be substantially explained  

by severity of depression [61]. In a recent analysis of  

the Healthy Aging of Neighborhoods of Diversity 

Across the Life Span (HANDLS) project, we found a 

cross-sectional relationship between two epigenetic age 

acceleration measures (the Horvath 1 and the Hannum 

clocks) and lower levels of positive affect only in White 

participants, which remained statistically significant 

after further adjusted for potential confounders, 

including in the case of the Hannum clock all socio-

demographic and socio-economic factors in addition to 

health-related and/or dietary factors [34]. A case-control 
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Table 5. Causal mediation analysis (four-way decomposition models) of the total effects of baseline elevated 
depressive symptoms (EDS), antidepressant use (ANTIDEP) and combined exposure (EDS_ANTIDEP) on mortality 
risk with epigenetic age acceleration measures as alternative mediators and/or moderators (n = 1,900). 

M X 

Four-way 

decomposition 

parameter 

MODEL 1 MODEL 2 MODEL 3 

β SE P β SE P β SE P 

IEAA EDS TE 0.0017106 0.095751 0.986 0.057647 0.102676 0.574 −0.05545 0.094308 0.557 

IEAA EDS CDE −0.0009915 0.095451 0.992 0.0567 0.102338 0.58 −0.066 0.09232 0.475 

IEAA EDS INTREF −0.0003691 0.004162 0.929 −0.00173 0.006309 0.784 0.002178 0.00998 0.827 

IEAA EDS INTMED 0.0056475 0.010026 0.573 0.006152 0.010888 0.572 0.012847 0.014419 0.373 

IEAA EDS PIE −2.58E-03 0.003413 0.45 −3.48E-03 0.005387 0.519 −4.47E-03 0.004667 0.338 

EEAA EDS TE −0.0006863 0.095779 0.994 0.049619 0.10193 0.626 −0.07021 0.09239 0.447 

EEAA EDS CDE -0.0131615 0.095165 0.89 0.048497 0.102664 0.637 −0.06518 0.09304 0.484 

EEAA EDS INTREF −0.0006583 0.009407 0.944 −0.00492 0.007303 0.5 −0.00579 0.004247 0.173 

EEAA EDS INTMED −0.0009921 0.012992 0.939 −0.00475 0.01055 0.653 −0.00491 0.008971 0.585 

EEAA EDS PIE 0.0141256 0.009243 0.126 0.010792 0.009831 0.272 0.005665 0.008845 0.522 

AgeAccelPheno EDS TE 0.0000886 0.096919 0.999 0.048942 0.102393 0.633 −0.06832 0.092412 0.46 

AgeAccelPheno EDS CDE −0.0113608 0.094191 0.904 0.052792 0.101469 0.603 −0.06007 0.092736 0.517 

AgeAccelPheno EDS INTREF 0.0021367 0.019468 0.913 −0.00675 0.017977 0.707 −0.00626 0.012055 0.604 

AgeAccelPheno EDS INTMED 0.0006401 0.006157 0.917 −0.00073 0.00375 0.846 0.001089 0.004606 0.813 

AgeAccelPheno EDS PIE 0.0086726 0.012413 0.485 0.00363 0.014195 0.798 −0.00307 0.011403 0.787 

AgeAccelGrim EDS TE −0.0266901 0.09377 0.776 0.046077 0.102604 0.653 −0.04957 0.095579 0.604 

AgeAccelGrim EDS CDE −0.0337597 0.092664 0.716 0.031192 0.10046 0.756 −0.03554 0.096764 0.713 

AgeAccelGrim EDS INTREF −0.0228723 0.01333 0.086 −0.01885 0.018102 0.298 −0.01554 0.00875 0.076 

AgeAccelGrim EDS INTMED −0.0271204 0.021055 0.198 −0.01486 0.018235 0.415 −0.00193 0.008711 0.825 

AgeAccelGrim EDS PIE 0.0570623 0.022187 0.01 0.048594 0.02296 0.034 0.003433 0.015426 0.824 

IEAA ANTIDEP TE 0.452231 0.153859 0.003 0.538803 0.164389 0.001 0.440586 0.156856 0.005 

IEAA ANTIDEP CDE 0.4542324 0.155238 0.003 0.537047 0.165304 0.001 0.442942 0.157676 0.005 

IEAA ANTIDEP INTREF 0.0001341 0.004183 0.974 −0.00125 0.003635 0.731 −0.0002 0.00492 0.968 

IEAA ANTIDEP INTMED −0.004634 0.016258 0.776 −0.00179 0.013365 0.894 −0.00503 0.013007 0.699 

IEAA ANTIDEP PIE 0.0024985 0.00371 0.501 0.004791 0.005987 0.424 0.002868 0.004371 0.512 

EEAA ANTIDEP TE 0.4954547 0.164074 0.003 0.572487 0.171995 0.001 0.437305 0.156729 0.005 

EEAA ANTIDEP CDE 0.4298175 0.152623 0.005 0.525322 0.164307 0.001 0.428169 0.156024 0.006 

EEAA ANTIDEP INTREF 0.0297936 0.038358 0.437 0.026051 0.038127 0.494 0.001755 0.015975 0.913 

EEAA ANTIDEP INTMED 0.0246407 0.029007 0.396 0.013565 0.022883 0.553 0.002075 0.009315 0.824 

EEAA ANTIDEP PIE 0.0112029 0.009952 0.26 0.007549 0.010763 0.483 0.005307 0.009532 0.578 

AgeAccelGrim ANTIDEP TE 0.4358111 0.152299 0.004 0.525749 0.164139 0.001 0.431893 0.155802 0.006 

AgeAccelGrim ANTIDEP CDE 0.4495079 0.151611 0.003 0.538851 0.162376 0.001 0.446032 0.155677 0.004 

AgeAccelGrim ANTIDEP INTREF −0.0104798 0.013628 0.442 −0.00932 0.018215 0.609 −0.00876 0.011756 0.456 

AgeAccelGrim ANTIDEP INTMED 0.0016019 0.006686 0.811 0.000567 0.00425 0.894 0.003058 0.009643 0.751 

AgeAccelGrim ANTIDEP PIE −0.0048189 0.015498 0.756 −0.00435 0.0173 0.801 −0.00844 0.014017 0.547 

AgeAccelGrim ANTIDEP TE 0.4427156 0.155681 0.004 0.566686 0.174617 0.001 0.442176 0.158689 0.005 

AgeAccelGrim ANTIDEP CDE 0.3828099 0.148107 0.01 0.440543 0.156218 0.005 0.414911 0.157088 0.008 

AgeAccelGrim ANTIDEP INTREF 0.0021218 0.026714 0.937 0.026911 0.037671 0.475 −0.00057 0.016763 0.973 

AgeAccelGrim ANTIDEP INTMED 0.0104902 0.024429 0.668 0.039127 0.037188 0.293 0.004146 0.014253 0.771 

AgeAccelGrim ANTIDEP PIE 0.0472937 0.02474 0.056 0.060105 0.026512 0.023 0.023691 0.018298 0.195 

IEAA EDS_ANTIDEP TE 0.2138826 0.09324 0.022 0.262237 0.097907 0.007 0.147103 0.091558 0.108 

IEAA EDS_ANTIDEP CDE 0.2142893 0.093159 0.021 0.264621 0.097837 0.007 0.146103 0.09096 0.108 
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IEAA EDS_ANTIDEP INTREF −0.0003589 0.002716 0.895 −0.00203 0.004074 0.618 0.000081 0.0061 0.989 

IEAA EDS_ANTIDEP INTMED −0.0001182 0.003628 0.974 −0.00126 0.006324 0.841 0.001688 0.007677 0.826 

IEAA EDS_ANTIDEP PIE 0.0000704 0.002159 0.974 0.000913 0.004477 0.838 −0.00077 0.003465 0.825 

EEAA EDS_ANTIDEP TE 0.2145101 0.093706 0.022 0.257794 0.097669 0.008 0.135865 0.090505 0.133 

EEAA EDS_ANTIDEP CDE 0.20317 0.092624 0.028 0.257856 0.097592 0.008 0.141998 0.09062 0.117 

EEAA EDS_ANTIDEP INTREF 0.0000545 0.00869 0.995 −0.00422 0.00767 0.582 −0.00643 0.004583 0.161 

EEAA EDS_ANTIDEP INTMED 0.0011981 0.009059 0.895 −0.00148 0.005139 0.773 −0.00156 0.006445 0.809 

EEAA EDS_ANTIDEP PIE 0.0100875 0.007507 0.179 0.005645 0.008045 0.483 0.001857 0.007479 0.804 

AgeAccelGrim EDS_ANTIDEP TE 0.2044953 0.09317 0.028 0.24704 0.097143 0.011 0.13677 0.090514 0.131 

AgeAccelGrim EDS_ANTIDEP CDE 0.208944 0.091911 0.023 0.260852 0.09639 0.007 0.15115 0.09056 0.095 

AgeAccelGrim EDS_ANTIDEP INTREF −0.0059607 0.012763 0.64 −0.01296 0.012284 0.291 −0.01061 0.009004 0.239 

AgeAccelGrim EDS_ANTIDEP INTMED −0.0002728 0.001951 0.889 0.000461 0.004399 0.917 0.003837 0.006843 0.575 

AgeAccelGrim EDS_ANTIDEP PIE 0.0017847 0.010754 0.868 −0.00131 0.012394 0.916 −0.00761 0.010221 0.457 

AgeAccelGrim EDS_ANTIDEP TE 0.1868112 0.09243 0.043 0.247715 0.098647 0.012 0.146775 0.09202 0.111 

AgeAccelGrim EDS_ANTIDEP CDE 0.1647262 0.089639 0.066 0.209912 0.094102 0.026 0.15814 0.09245 0.087 

AgeAccelGrim EDS_ANTIDEP INTREF −0.0151191 0.013719 0.27 −0.009 0.017296 0.603 −0.01431 0.00868 0.099 

AgeAccelGrim EDS_ANTIDEP INTMED −0.0106622 0.015063 0.479 −0.00257 0.015721 0.87 −0.0021 0.005776 0.716 

AgeAccelGrim EDS_ANTIDEP PIE 0.0478663 0.018415 0.009 0.049371 0.019335 0.011 0.005045 0.013287 0.704 

Abbreviations: AgeAccel GrimAge: GrimAge epigenetic age acceleration; AgeAccel Pheno: PhenoAge epigenetic age acceleration; ANTIDEP: Antidepressant use; CDE: Controlled 
Direct Effect; EDS: Elevated Depressive Symptoms; EDS_ANTIDEP: Either EDS or ANTIDEP; EEAA: Extrinsic Epigenetic Age Acceleration; HR: Hazard Ratio; IEAA: Intrinsic Epigenetic 
Age Acceleration; INTMED: Mediated Interaction; INTREF: Interaction Referent; PIE: Pure Indirect Effect; SE: Standard Error; TE: Total Effect; X: Exposure. Values are estimates ± SE 
from four-way decomposition models and their p-values, with final equation being a Cox PH model for all-cause mortality, exposure being each of the depressive symptoms and 
antidepressant use baseline exposures; and mediators being each of the epigenetic clock metrics. Model 1 is unadjusted; Model 2 adjusted for sociodemographic; Model 3 is 
Model 2 further adjusted for lifestyle and health characteristics. P is for null hypothesis that β = 0. Bolded values are when P < 0.05. 

 

study with 60 age-matched controls and 49 MDD cases 

found a link between MDD and GrimAge acceleration 

[62]. GrimAge acceleration is a DNAm-based epigenetic 

clock which is an estimator of smoking pack-years and 

proxy DNAm biomarkers of seven different plasma 

proteins [62]. After adjusting for sex, current smoking 

status, and BMI, the link between GrimAge and MDD 

remained significant (p = 0.015) [62]. Using data from 

the Health and Retirement Study, GrimAge DNAm age 

was linked to long-term, persistently higher depressive 

symptoms [63]. Nevertheless, when accounting for 

smoking and BMI this connection was considerably 

diminished, becoming marginally significant when 

comparing high vs. low depressive symptom levels in 

the fully adjusted model [63]. This is in line with  

the earlier study with HANDLS data [34], in which no 

link was detected between depressive symptoms and 

epigenetic aging using the Horvath and Hannum 

epigenetic clocks, and only a weak association with  

the reduced positive affect component of depressive 

symptom measurement. Our present results are consistent 

with these previous findings. 

 

It is well established that depression is a major risk 

factor predictive of all-cause mortality for adults across 

the life span. However, additional consideration for 

older adults remains a public health concern, given  

their vulnerabilities to psychosocial difficulties, such as 

loneliness and social isolation that may have a role in 

the diagnosis and/or its severity. In several longitudinal 

studies, higher mortality rates were observed among 

older adults living with more depressive symptoms, 

clinically diagnosed minor and major depression, and 

history of mood disorders compared to nondepressed 

adults [64, 65]. Prior studies have established these 

associations in populations outside of the U.S. [66, 67] 

and in samples previously diagnosed with chronic 

health conditions such as cancer or diabetes [18, 19]. 

Emerging work has shown modest or null associations 

between depression or depressive symptoms and all-

cause mortality rates among older adult women [18, 19, 

68]. Depression was related to all-cause mortality  

in postmenopausal women from China [68]. Other 

studies using U.S.-based female populations exclusively 

included women previously diagnosed with other co-

morbidities and terminal conditions such as breast and 

colorectal cancer and showed minimal effects [18, 19]. 

In one study using participant data from the WHI, 

women who developed depression before a breast 

cancer diagnosis, unlike women with a prior history of 

depression, showed a modestly heightened risk for 

mortality [19]. This finding suggests that developing a 

mood disorder later in life along with other severe 

illnesses might increase risk, but the nuances of these 

mechanisms are still unclear. Prior depression or 

depressive symptoms appeared to be strong predictors 

of all-cause mortality or death from breast cancer in  

this sample. However, irrespective of how depression or 
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EDS were conceptualized, neither depressive symptoms 

nor clinically significant depression influenced the risk 

of death among women with colorectal cancer [18]. 

Though depression often remains a robust predictor of 

death from any cause for older adults, chronic diseases 

and health behaviors may be meaningful contributors as 

well [64, 65]. 

 

A primary surmised mechanism underlying mood 

disorder symptomatology and mortality risk proposes 

that for individuals living with minor, moderate, or major 

depression, the potential for hypothalamic-pituitary-

adrenal (HPA) axis dysregulation is exacerbated, 

wherein neuroendocrine and inflammatory modulation 

can affect overall biological functioning and wellness 

[69]. Nevertheless, our study did not indicate that 

depression by itself was associated with all-cause 

mortality. In contrast, antidepressant use was an 

independent predictor of all-cause mortality, even after 

adjusting for key potential confounders including 

lifestyle and health-related factors. This coupled with 

persistent depressive symptoms or an increase in 

symptoms and medications over time simultaneously 

were also linked to all-cause mortality independently  

of measured risk factors. Evidence from the WHI study 

as a whole, including a much larger sample than the  

one used in our present study, suggests that depression 

or antidepressant use may increase the vulnerability of 

postmenopausal women to age-related health problems 

can increase risks for frailty [7], all-cause and cause-

specific mortality [18–20]. Thus, our present sub-study 

may be underpowered to detect an association between 

EDS and mortality as compared to the larger study. 

 

Several studies have investigated antidepressant use  

and mortality. The results are mixed with two showing 

lower and one showing higher mortality in treated 

patients. Acharya et al. found that anti-depressant 

medication treatment lowered all-cause mortality in  

a sample of veterans especially among those with 

increased cardiovascular risk [70]. Qian et al. examined 

how depression diagnosis and antidepressant use  

was associated with mortality in a sample of young 

Social Security Disability Insurance recipients [71]. 

They concluded that antidepressant treatment lowered 

mortality significantly [71]. Hansen et al. investigated 

second-generation antidepressants and concluded that in 

their fully adjusted models, antidepressant use could 

slightly increase all-cause mortality [72]. 

 

Finally, our study showed that GrimAge is a  

potential mediator explaining the association between 

antidepressant use and all-cause mortality, although 
only before we adjusted for lifestyle and health-related 

factors. Given that GrimAge was conceived of as an 

independent predictor for all-cause mortality risk, this 

finding is consistent with our hypothesis, and shows 

that this clock is specifically explaining some of the  

TE of antidepressant use on mortality. Furthermore, it 

has recently been argued that GrimAge was developed 

as a measure of healthspan/lifespan [73]. Therefore, it 

may be more sensitive to capturing the impacts of the 

environment than DNAm predictors of chronological 

age. As people age, their DNAm predictors (e.g. Horvath, 

Hannum clocks) become more tightly coded and less 

susceptible to environmental inputs [73]. Future studies 

should examine which parts of this clock may be 

contributing to this mediating effect. 

 

Strengths and limitations 

 

A strength of the study is that detailed data were collected 

at enrollment on all WHI participants, facilitating the 

evaluation of hypothesized relationships while taking 

key confounders into consideration. Second, it is possible 

to generalize study findings to postmenopausal women  

of diverse racial/ethnic backgrounds that reside in 

various geographical areas within the U.S. 

 

However, there are several limitations of our study. 

First, ancillary study data were analyzed using a 

subsample of the original WHI participants, with 

missing data on exposure, mediator, moderator, 

outcome, and covariate variables potentially resulting 

in selection bias. In fact, the WHI includes participants 

who were recruited in a voluntary basis. It is not 

representative of all postmenopausal women in the 

U.S. Since there was no complex sampling design,  

and no weights in the original WHI study, there was 

no need to re-weight the analyses for this particular 

study which is based on a sub-sample of WHI. Third, 

measurement error is a notable issue when variables 

are assessed by self-report. Specifically, EDS was 

determined using a threshold on a screening instrument 

rather than a full diagnosis of depression and its 

severity. Therefore, it is still possible that use of 

antidepressants is a marker of severity of depression 

independently of EDS. Fourth, residual confounding 

due to unmeasured confounders as well as confounding 

by indication remain as concerns for observational 

study designs. Without repeated measurements of 

epigenetic age acceleration, depressive symptoms, and 

antidepressant use, reverse causality cannot be ruled 

out as an alternative explanation. Also, a causal 

relationship between epigenetic age acceleration, 

depressive symptoms, and antidepressant use, can  

only be definitively established in the context of  

an experimental design. Finally, the WHI is not 

population-based but involves volunteers at clinical 
centers, specifically targeting postmenopausal women. 

Therefore, its generalizability to men as well as younger 

and relatively less educated women is not possible. 
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CONCLUSIONS 
 
In summary, among postmenopausal women,  

higher GrimAge age acceleration partially explained  

the relationship between antidepressant use and  

increased all-cause mortality risk, though only prior  

to controlling for lifestyle and health-related factors. 

Antidepressant use and epigenetic age acceleration 

independently predicted increased all-cause mortality 

risk. Further studies are needed in comparable and 

diverse populations. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Graphical depiction of the study design. 
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Supplementary Table 
 

Supplementary Table 1. Causal mediation analysis (four-way decomposition models) of the total effects of 
epigenetic age acceleration measures on mortality risk with baseline elevated depressive symptoms (EDS), 
antidepressant use (ANTIDEP) or combined exposure (EDS_ANTIDEP) as alternative mediators and/or moderators 
(n = 1,900). 

X M 

Four-way 

decomposition 

parameter 

MODEL 1 MODEL 2 MODEL 3 

β SE P β SE P β SE P 

IEAA EDS TE 0.027407 0.030382 0.367 0.06012 0.03075 0.051 0.042168 0.030107 0.161 

IEAA EDS CDE 0.035034 0.03177 0.27 0.071997 0.032002 0.024 0.053996 0.031653 0.088 

IEAA EDS INTREF −0.00817 0.011681 0.484 −0.01217 0.01102 0.269 −0.01324 0.008621 0.125 

IEAA EDS INTMED 0.000537 0.000921 0.56 0.000536 0.000938 0.567 0.000969 0.001073 0.367 

IEAA EDS PIE 7.09E-06 0.000682 0.992 −2.44E-04 0.000571 0.669 4.40E-04 0.000734 0.549 

EEAA EDS TE 0.11742 0.033331 <0.001 0.129132 0.034021 <0.001 0.113847 0.033864 0.001 

EEAA EDS CDE 0.118629 0.034891 0.001 0.135227 0.035315 <0.001 0.12437 0.035931 0.001 

EEAA EDS INTREF −0.00093 0.012225 0.939 −0.00599 0.011984 0.617 −0.0098 0.009416 0.298 

EEAA EDS INTMED −0.00011 0.001445 0.939 −0.00049 0.001079 0.648 −0.00045 0.00084 0.591 

EEAA EDS PIE −0.00017 0.001231 0.891 0.000391 0.000895 0.662 −0.00027 0.00059 0.641 

AgeAccelPheno EDS TE 0.182011 0.035843 <0.001 0.204541 0.037093 <0.001 0.161381 0.035735 <0.001 

AgeAccelPheno EDS CDE 0.180454 0.036805 <0.001 0.208895 0.037995 <0.001 0.166715 0.037244 <0.001 

AgeAccelPheno EDS INTREF 0.001544 0.0146 0.916 −0.00437 0.01418 0.758 −0.00549 0.011299 0.627 

AgeAccelPheno EDS INTMED 0.000073 0.000699 0.917 −7.8E-05 0.000395 0.843 8.05E-05 0.00042 0.848 

AgeAccelPheno EDS PIE −5.9E-05 0.0005 0.906 9.41E-05 0.000404 0.816 0.00008 0.000408 0.844 

AgeAccelGrim EDS TE 0.29565 0.036358 <0.001 0.327529 0.040086 <0.001 0.265959 0.046626 <0.001 

AgeAccelGrim EDS CDE 0.316078 0.039023 <0.001 0.339236 0.042165 <0.001 0.281169 0.048263 <0.001 

AgeAccelGrim EDS INTREF −0.01662 0.011246 0.139 −0.01055 0.011877 0.374 −0.01472 0.009771 0.132 

AgeAccelGrim EDS INTMED −0.0031 0.002411 0.198 −0.00164 0.00201 0.414 −0.0004 0.001308 0.761 

AgeAccelGrim EDS PIE −0.0007 0.001953 0.719 0.000488 0.001585 0.758 −8.9E-05 0.000384 0.817 

IEAA ANTIDEP TE 0.026303 0.03095 0.395 0.062246 0.031143 0.046 0.04036 0.03044 0.185 

IEAA ANTIDEP CDE 0.027571 0.030524 0.366 0.061114 0.030954 0.048 0.043247 0.030582 0.157 

IEAA ANTIDEP INTREF −0.00359 0.011851 0.762 −0.00149 0.010693 0.889 −0.00438 0.009414 0.641 

IEAA ANTIDEP INTMED −0.0003 0.001045 0.773 −0.00012 0.000896 0.891 −0.00031 0.000785 0.69 

IEAA ANTIDEP PIE 0.002623 0.002858 0.359 0.002745 0.003175 0.387 0.001811 0.002421 0.454 

EEAA ANTIDEP TE 0.128582 0.034868 <0.001 0.139916 0.035274 <0.001 0.112495 0.034025 0.001 

EEAA ANTIDEP CDE 0.106216 0.033128 0.001 0.12211 0.033749 <0.001 0.108782 0.034044 0.001 

EEAA ANTIDEP INTREF 0.01743 0.014849 0.24 0.014681 0.014246 0.303 0.002495 0.01067 0.815 

EEAA ANTIDEP INTMED 0.001828 0.002218 0.41 0.00097 0.001661 0.559 0.000112 0.000534 0.834 

EEAA ANTIDEP PIE 0.003109 0.002902 0.284 0.002155 0.003117 0.489 0.001107 0.002326 0.634 

AgeAccelGrim ANTIDEP TE 0.178892 0.035431 <0.001 0.205059 0.036746 <0.001 0.162047 0.035753 <0.001 

AgeAccelGrim ANTIDEP CDE 0.184241 0.036073 <0.001 0.207841 0.037352 <0.001 0.167278 0.036557 <0.001 

AgeAccelGrim ANTIDEP INTREF −0.00467 0.011651 0.689 −0.00208 0.011179 0.852 −0.00379 0.009531 0.691 

AgeAccelGrim ANTIDEP INTMED 0.000119 0.000481 0.805 4.57E-05 0.000304 0.881 0.000248 0.000704 0.725 

AgeAccelGrim ANTIDEP PIE −0.0008 0.00256 0.754 −0.00074 0.002935 0.8 −0.00169 0.00228 0.458 

AgeAccelGrim ANTIDEP TE 0.296287 0.036399 <0.001 0.330774 0.040302 <0.001 0.26638 0.046889 <0.001 

AgeAccelGrim ANTIDEP CDE 0.286615 0.037212 <0.001 0.30887 0.040733 <0.001 0.260132 0.046933 <0.001 

AgeAccelGrim ANTIDEP INTREF 0.004317 0.010551 0.682 0.01278 0.011209 0.254 0.002445 0.009382 0.794 

AgeAccelGrim ANTIDEP INTMED 0.00074 0.001848 0.689 0.002878 0.002815 0.307 0.000348 0.00138 0.801 
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AgeAccelGrim ANTIDEP PIE 0.004616 0.003005 0.124 0.006246 0.003503 0.075 0.003455 0.003124 0.269 

IEAA EDS_ANTIDEP TE 0.024951 0.030867 0.419 0.05628 0.03108 0.07 0.037564 0.030254 0.214 

IEAA EDS_ANTIDEP CDE 0.034332 0.031718 0.279 0.07147 0.032069 0.026 0.05517 0.03191 0.084 

IEAA EDS_ANTIDEP INTREF −0.00942 0.016635 0.571 −0.01548 0.015928 0.331 −0.01757 0.013783 0.202 

IEAA EDS_ANTIDEP INTMED −1.6E-05 0.000487 0.974 −0.00018 0.000855 0.832 0.000175 0.000962 0.856 

IEAA EDS_ANTIDEP PIE 5.76E-05 0.001767 0.974 0.000472 0.002178 0.828 −0.00021 0.001168 0.855 

EEAA EDS_ANTIDEP TE 0.118092 0.033739 <0.001 0.127094 0.034381 <0.001 0.109143 0.033757 0.001 

EEAA EDS_ANTIDEP CDE 0.113213 0.034885 0.001 0.13155 0.035283 <0.001 0.124907 0.036301 0.001 

EEAA EDS_ANTIDEP INTREF 0.002157 0.017292 0.901 −0.00579 0.017534 0.741 −0.01582 0.014508 0.276 

EEAA EDS_ANTIDEP INTMED 0.000169 0.001361 0.901 −0.00023 0.000765 0.765 −0.00017 0.000901 0.846 

EEAA EDS_ANTIDEP PIE 0.002552 0.002113 0.227 0.001559 0.002269 0.492 0.000231 0.00118 0.845 

AgeAccelGrim EDS_ANTIDEP TE 0.178451 0.035762 <0.001 0.20038 0.036953 <0.001 0.160073 0.03576 <0.001 

AgeAccelGrim EDS_ANTIDEP CDE 0.183306 0.037339 <0.001 0.213135 0.038619 <0.001 0.174037 0.03809 <0.001 

AgeAccelGrim EDS_ANTIDEP INTREF −0.0051 0.018362 0.781 −0.01258 0.018163 0.489 −0.01358 0.015672 0.386 

AgeAccelGrim EDS_ANTIDEP INTMED −4.4E-05 0.000308 0.887 8.09E-05 0.000681 0.905 0.000586 0.000997 0.557 

AgeAccelGrim EDS_ANTIDEP PIE 0.000291 0.001762 0.869 −0.00026 0.002156 0.904 −0.00097 0.001334 0.469 

AgeAccelGrim EDS_ANTIDEP TE 0.293954 0.036326 <0.001 0.326586 0.040187 <0.001 0.264104 0.046683 <0.001 

AgeAccelGrim EDS_ANTIDEP CDE 0.303576 0.039729 <0.001 0.3254 0.042934 <0.001 0.282577 0.048697 <0.001 

AgeAccelGrim EDS_ANTIDEP INTREF −0.01186 0.01562 0.448 −0.00329 0.01692 0.846 −0.01859 0.014623 0.204 

AgeAccelGrim EDS_ANTIDEP INTMED −0.00175 0.002395 0.465 −0.0005 0.002567 0.846 -0.00047 0.001317 0.721 

AgeAccelGrim EDS_ANTIDEP PIE 0.003991 0.002595 0.124 0.00498 0.0029 0.086 0.000593 0.001632 0.717 

Abbreviations: AgeAccel GrimAge: GrimAge epigenetic age acceleration; AgeAccel Pheno: PhenoAge epigenetic age acceleration; ANTIDEP: Antidepressant use; CDE: Controlled 
Direct Effect; EDS: Elevated Depressive Symptoms; EDS_ANTIDEP: Either EDS or ANTIDEP; EEAA: Extrinsic Epigenetic Age Acceleration; HR: Hazard Ratio; IEAA: Intrinsic Epigenetic 
Age Acceleration; INTMED: Mediated Interaction; INTREF: Interaction Referent; PIE: Pure Indirect Effect; SE: Standard Error; TE: Total Effect; X: Exposure. Values are estimates ± SE 
from four-way decomposition models and their p-values, with final equation being a Cox PH model for all-cause mortality, mediators being each of the EDS and antidepressant use 
baseline mediators; and exposures being each of the epigenetic clock metrics. Model 1 is unadjusted; Model 2 adjusted for soc iodemographic; Model 3 is Model 2 further adjusted 
for lifestyle and health characteristics. P is for null hypothesis that β = 0. Bolded values are when P < 0.05. 
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