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INTRODUCTION 
 

Advancing age is the largest non-modifiable risk factor 

for most chronic diseases including cardiovascular 

disease (CVD) and dementia [1]. Many of these diseases 

arise in parallel and are thus termed ‘co-morbidities of 

aging’ [2, 3]. In particular, growing evidence suggests 

that CVD and dementia are correlatively linked in that 

CVD risk in mid-life is associated with memory decline 

and subsequent dementia diagnosis in older age (e.g., 

>70 years of age) [4, 5]. In parallel, peripheral vascular 
dysfunction (e.g., large elastic artery [aorta and carotid 

arteries] stiffening and endothelial dysfunction) is a main 

contributor to the development of CVD with aging  

[6, 7], and growing evidence suggests that peripheral 

vascular dysfunction may also be associated with 

cognitive decline and mild cognitive impairment (MCI), 

which increases the risk for dementia [8]. As such, 

assessment of peripheral vascular health/function may be 

a viable and non-invasive method to predict cognitive 

outcomes and assess dementia risk. 

 

Interestingly, the associations between common non-

invasive measures of CV health (e.g., blood pressure)  

and risk of dementia are not well-established.  
For example, studies have demonstrated that lower 

systolic blood pressure is associated with reduced 

dementia risk in older adults (60-70 years of age), 
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ABSTRACT 
 

Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which 
remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for 
reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and 
cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, 
that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging 
evidence suggests that several fundamental aging mechanisms (e.g., “hallmarks” of aging), including chronic low-
grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to 
excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, 
targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral 
vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain 
lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and 
synthetic) intersect with aging “hallmarks” to promote peripheral and/or cerebral vascular health represent a 
viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore 
mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health 
with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with 
aging might provide a new approach for assessing dementia risk in older adults. 
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perhaps by protecting white matter integrity [9]. On the 

contrary, other studies have suggested that higher blood 

pressure might be beneficial to protect against cognitive 

decline and subsequent dementia diagnosis, presumably 

by increasing blood flow to the brain and preventing 

hypoperfusion [10]. Therefore, it is an opportune time to 

consider whether alternative and less commonly used 

measures of peripheral vascular health, which are closely 

associated with age-related CVD and described in detail 

below, might be used to predict cognitive dysfunction 

and dementia risk more accurately. 

 

ASSOCIATIONS BETWEEN DEMENTIA AND 

CEREBROVASCULAR DYSFUNCTION 
 

Dementia is commonly defined as a condition that is 

progressive and affects various domains of cognitive 

function. Advanced dementia impairs function (i.e., the 

ability to perform common day-to-day activities) and 

greatly reduces memory, thinking, learning, 

comprehension, and decision making [11]. There are 

many types of dementia with various genetic, cellular, 

and pathological underpinnings, and the purpose of this 

review is not to describe these types of dementia in 

detail. However, vascular dysfunction in the brain 

consistently emerges as a common feature among major 

types of dementia [12, 13]. Below, we very briefly 

describe the most common subtypes of dementia and 

how cerebrovascular dysfunction (i.e., dysfunction of the 

vasculature of the brain) relates to each type (Figure 1). 

We also describe how ROS-related oxidative stress is 

associated with these types of dementia. 

Late-onset Alzheimer’s disease 
 

The most common type of dementia is Late-Onset 

Alzheimer’s Disease (LOAD) which accounts for ~50-

60% of all dementia cases [14]. Neuropathologies that 

are associated with Alzheimer’s disease (e.g., Aβ plaques 

and tau neurofibrillary tangles) are closely linked to 

cerebrovascular dysfunction by inducing vascular lesions, 

blood-brain barrier (BBB) disruption, and atherosclerosis 

[15]. Pathological Aβ and hyperphosphorylated tau are 

also linked to excessive oxidative stress, which may 

further drive the cycle of neuronal dysfunction and 

cognitive impairment [16, 17]. 

 

Lewy body dementia 
 

Lewy body dementia accounts for ~3-7% of all 

dementia cases and is closely associated with the 

pathological aggregation of the α-Synuclein (Lewy 

bodies) and to a lesser extent Aβ plaques [18]. The 

role of pathogenic α-Synuclein in cerebrovascular 

dysfunction is complex and largely misunderstood, 

but recent evidence points towards the fact that α-

Synuclein misfolding and aggregation triggers 

neuroinflammatory responses, ROS production, and 

mitochondrial dysfunction [19]. In fact, some studies 

on postmortem tissue indicate that cerebrovascular 

lesions are even associated with Lewy body 

aggregation [20], but future studies are needed to 

determine more conclusive links between cerebro-

vascular dysfunction (and related mechanisms) and α-

Synuclein aggregation. 

 

 
 

Figure 1. Cerebrovascular dysfunction is an underlying feature of most major types of dementia. Additional and key hallmarks 

are shown for each dementia subtype. Abbreviations: BBB=blood brain barrier; Aβ=Amyloid beta. 
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Frontotemporal dementia 
 

Frontotemporal dementia (FTD) accounts for ~3-26% of 

all dementias and results in progressive neuron loss in 

frontal and temporal lobes. This neuron loss and pruning 

(e.g., loss of synapses) is associated with behavioral 

abnormalities (e.g., apathy, agitation, and decline in 

socially acceptable behavior) [21]. The links between 

FTD and cerebrovascular dysfunction remain 

understudied, but some cases of FTD are strongly 

associated with white matter alterations, cerebrovascular 

dysfunction, and small-vessel (e.g., coronary arteries) 

disease in the brain [22]. As with most types of 

dementia, FTD is also closely associated with excessive 

ROS-related oxidative stress [23]. 

 

Vascular dementia 
 

Vascular dementia, a form of dementia caused by 

diseased intracranial arteries (e.g., infarction; chronic 

hypertension), accounts for ~4-6% of all dementias  

[24, 25]. Evidence suggests that cerebral hypoperfusion 

may be main another cause of vascular dementia, which 

can lead to hypoxia and blood-brain barrier breakdown 

[13]. Furthermore, vascular dementia is associated 

subcortical white matter lesions, microvascular 

impairments in the brain, and disrupted neuronal network 

activity [24]. As with the other types of dementia, 

vascular dementia is closely associated with ROS-related 

oxidative stress [26]. 

 

LINKS BETWEEN CEREBRAL VASCULAR 

AND PERIPHERAL VASCULAR DYSFUNC-

TION 
 

Treatments (described below in more detail) aimed at 

reducing peripheral vascular risk factors, such as aerobic 

exercise and certain dietary patterns, have been shown to 

attenuate dementia incidence and progression [13]. These 

mechanisms largely involve lower ROS-related oxidative 

stress and inflammation, improved mitochondrial 

function, and reduced burden of cellular senescence. 

Emerging evidence suggests that these mechanisms also 

contribute to cerebrovascular dysfunction, suggesting that 

measurements of peripheral vessel function are good 

indicators of brain health/function [27]. 

 

Cerebrovascular dysfunction 
 

The capacity of the cerebrovasculature to coordinate 

blood flow to tissue demand and remove toxic 

compounds is essential for maintaining brain 
homeostasis and cognitive health [28, 29]. A critical 

function of cerebral vessels is to dilate and constrict in 

response to changes in blood flow demand, and as such, 

reductions in cerebral blood flow may reflect 

dysfunction of the cerebrovasculature [28, 29]. There is 

clear cerebrovascular dysfunction with aging [30]; 

however, the exact mechanisms mediating this dys-

function are incompletely understood. Emerging 

evidence suggests that cerebrovascular dysfunction with 

aging could be due to the way in which blood flow is 

delivered to the brain [31, 32]. For example, with 

advancing age, there is increased cerebrovascular 

pulsatility, which describes the variation of blood flow 

to the brain within each cardiac cycle [33]. Higher 

cerebral pulsatility can damage the cerebrovasculature 

and structures within the brain, ultimately leading to 

cerebrovascular diseases and reduced cognitive function 

[33]. As such, mitigating the increase in cerebral 

pulsatility with advancing age or in a state of advanced 

age, holds promise for preserving and/or improving 

brain health and potentially reducing risk of dementia. 

 

Peripheral vascular dysfunction 

 
Peripheral vascular dysfunction, as defined above (e.g., 

large elastic artery stiffening and endothelial dysfunction), 

occurs with advancing age [7]. The large elastic arteries 

expand and recoil with each bolus of blood ejected from 

the left ventricle during systole. The process of expanding 

and recoiling allow for dampening of the oscillatory pulse 

of blood that is ejected into the arterial system and aids in 

the outward flow of blood into the peripheral circulation 

and helps maintain perfusion of the heart during diastole 

[34]. The pulsatility-dampening effect of large elastic 

arteries is critical for reducing the transmission of harmful 

high pulsatile pressures to low-impedance, high flow 

sensitive organs, such as the brain [34]. 

 
Large elastic artery stiffness 

Age-related large elastic artery stiffening occurs 

mainly as a result of degradation of the load bearing 

arterial wall protein, elastin, which is primarily 

responsible for the expansion and recoiling of the large 

elastic arteries during systole [34]. Elastin degradation 

consequently results in deposition of collagen in the 

arterial wall (i.e., fibrosis), ultimately creating a stiffer 

extracellular matrix [34]. The most well-established 

cellular/molecular mechanisms mediating adverse 

arterial wall remodeling is excessive production of 

ROS (relative to endogenous antioxidant defenses) and 

chronic low-grade inflammation [35]. 

 
Large elastic artery stiffness can be assessed in vivo as 

aortic pulse wave velocity (PWV), which is an 

assessment of the regional speed of the pulse wave 

generated by the heart when blood is ejected into the 

arterial system [36]. Aortic PWV, measured as carotid 

artery to femoral artery (carotid-femoral) PWV is the 

reference standard non-invasive in vivo assessment of 

aortic stiffness in humans [36]. In rodents, aortic PWV 
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is measured as the PWV between the aortic arch and the 

abdominal aorta [35]. The local distensibility of the 

carotid artery can also be determined in humans by 

assessing carotid artery compliance (change in artery 

diameter for a given change in arterial pressure) [37]. 

 

Vascular endothelial function 

The vascular endothelium is a single layer of cells 

lining the lumen of blood vessels. The endothelium 

plays a critical role in the regulation of vascular tone 

and systemic blood flow, metabolism, thrombosis, 

immune system function and a variety of other 

processes, in part via the production of the vasodilatory 

and mostly vasoprotective molecule nitric oxide (NO) 

[38]. Mechanical (i.e., blood flow-induced shear stress) 

and chemical (e.g., acetylcholine [ACh]) stimuli elicit 

NO production in endothelial cells. Endothelium-

derived NO subsequently diffuses to vascular smooth 

muscle cells, where it activates an intracellular signaling 

cascade leading to vascular smooth muscle relaxation 

and vasodilation (endothelium-dependent dilation 

[EDD]) [38]. Like mechanisms mediating age-related 

large elastic artery stiffening, the underpinnings of 

reduced NO bioavailability and endothelial dysfunction 

with aging are primarily explained by excessive ROS-

related oxidative stress and inflammation [35]. 

Moreover, NO-mediated endothelial dysfunction can 

promote large elastic artery stiffening by inducing a 

relative state of vasoconstriction in vascular smooth 

muscle cells [35]. In addition to reducing NO 

bioavailability, excessive ROS production and inflam-

mation can increase the expression of endothelin-1 (ET-

1) [39]. The increased expression and production of ET-

1 can further reduce the bioavailability of NO and 

promote adverse arterial wall remodeling [39]. 

 

The gold-standard non-invasive in vivo assessment of 

NO-mediated vascular endothelial function in humans is 

brachial artery flow-mediated dilation (FMDba), which 

consists of determining the change in brachial artery 

diameter in response to a blood flow stimulus (which 

results in a shear rate-induced release of NO) [38]. NO-

mediated EDD can also be assessed in humans as the 

change in blood flow in response to intra-arterial infusion 

of acetylcholine (ACh) or in isolated artery segments of 

rodents following exposure to ACh [40]. In preclinical 

animal models, endothelial function is commonly 

assessed by exposing isolated artery segments (e.g., 

carotid arteries) to ACh [40, 41] (Figure 2). 

 

RELATION BETWEEN PERIPHERAL 

VASCULAR FUNCTION AND BRAIN 

HEALTH 
 

As previously stated, large elastic artery stiffening can 

increase the pulsatility of blood flow to the brain. 

Considering the brain is a high-flow organ with low 

resistance vascular beds, the increase in pulsatility can 

damage cerebral microvessels and directly promote 

cerebrovascular dysfunction leading to a state of 

hypoperfusion of oxygen to the brain and ultimately 

cognitive impairment [42]. Indeed, a myriad of large 

cohort studies (n = 205-3207) have consistently 

demonstrated that large elastic artery stiffening, as 

measured by aortic PWV, is inversely associated with 

cognitive function [32, 43–45]. In addition to aortic 

PWV, aortic stiffness as assessed by carotid artery 

stiffening, is inversely related to cognitive function in 

ML/O adults [46–49]. Importantly, large elastic artery 

stiffening has emerged as an independent predictor of 

future cognitive impairment in ML/O adults [50]. 

 

Like large elastic artery stiffening, peripheral vascular 

endothelial dysfunction, as assessed by flow-mediated 

dilation, is a measure of peripheral vascular function 

that is associated with cognitive impairment [51, 52]. 

However, it is currently unclear whether endothelial 

dysfunction is an independent predictor of future 

cognitive impairment. Nevertheless, given the influence 

of endothelial dysfunction in the progression of large 

elastic artery stiffening, it is apparent that peripheral 

vascular dysfunction contributes to cognitive 

impairment with aging (Figure 3). 

 

SHARED MOLECULAR/CELLULAR 

MECHANISMS 
 

Although the physiological relation between peripheral 

vascular dysfunction and brain aging has been well 

documented, the shared cellular/molecular mechanisms 

mediating both processes have not been thoroughly 

reviewed concomitantly. As described throughout this 

review, excessive production of ROS-related oxidative 

stress underlies both peripheral vascular dysfunction 

and brain aging. 

 

 
 

Figure 2. Mechanisms of peripheral vascular dysfunction. 
Abbreviations: PWV, pulse wave velocity. 

9283



www.aging-us.com 5 AGING 

Although excessive oxidative stress is a well-

established macro-mechanistic process underpinning 

both peripheral vascular dysfunction and brain aging, 

the integrative cellular and molecular processes 

mediating this response are incompletely understood. 

Herein, we will focus on select “hallmarks” of aging [1] 

that have been implicated in both peripheral vascular 

and cognitive dysfunction and are key mediators of 

excessive ROS production. Moreover, we will discuss 

these “hallmarks” as putative targets, which could be 

“aimed at” to improve peripheral vascular and cognitive 

function with aging. Below, we will focus key aging 

“hallmarks”: inflammation, mitochondrial dysfunction, 

cellular senescence and deregulated nutrient sensing 

(Figure 4). 

 

 
 

Figure 3. Relationship between peripheral vascular 
dysfunction and brain health. Abbreviations: PWV=pulse 
wave velocity. 
 

 
 

Figure 4. Molecular and cellular mechanisms shared 
between peripheral and cerebrovascular dysfunction. 

Inflammation 
 

Chronic low-grade inflammation, characterized in part 

as heightened nuclear factor κ B (NF κB) signaling, is 

a key feature of aging and occurs due to an imbalance 

between the production of pro- and anti-inflammatory 

factors [1], which can directly contribute to ROS 

production [53] and peripheral vascular dysfunction 

[54]. In old mice, inhibition of NF κB signaling with 

salisylate (an NF κB inhibitor), has shown to restore 

carotid artery endothelial function back to young 

levels. Direct inhibition of NF κB signaling (with 

salsalate – human corollary of salislyate) lowers aortic 

stiffness in sedentary normal weight ML/O adults  

and improves endothelial function in overweight/ 

obese ML/O adults [55, 56]. Furthermore, oral 

supplementation with the well-established anti-

inflammatory compound curcumin has been shown to 

restore (back to young levels) aortic stiffness and 

carotid artery endothelial function in old mice [57] and 

improve endothelial function in ML/O adults (no 

influence on aortic stiffness) [58]. Together, the results 

of these studies demonstrate a clear role for chronic 

low-grade inflammation in mediating peripheral 

vascular dysfunction with aging. 

 

In addition to the clear effect of inflammation on age-

related peripheral vascular dysfunction, inflammation is 

highly implicated in brain aging [59]. Levels of 

inflammation in the brain are vastly regulated under 

normal physiological conditions; however, in states of 

excessive inflammation (e.g., aging), the brain becomes 

progressively vulnerable. Excessive inflammation with 

aging may adversely influence brain function in 

potentially three different ways: 1) directly via 

impairment of the blood brain barrier (BBB); 2) 

indirectly via elevated levels of pro-inflammatory 

factors in the circulation that can cross the BBB; and/or 

3) astrocyte and microglia activation [60]. The BBB is 

comprised of tight junctions, pericytes, basal 

membranes and perivascular astrocytes and is a direct 

conduit between the peripheral circulation and the 

tissues of the brain. Excessive inflammation can impair 

BBB integrity by acting on any or all components of the 

BBB. Moreover, with impaired BBB function, systemic 

inflammation is more susceptible to crossing into brain 

tissues, and astrocytes and microglia have greater 

likelihood of being activated, ultimately causing a state 

of neuroinflammation. Indeed, with clinical conditions 

characterized by heightened immune responses (e.g., 

rheumatoid arthritis and acute infection), or a 

heightened inflammatory state [61–63], there is elevated 

risk for dementia. Moreover, dementia risk is higher in 

patients with genetic conditions that are characterized in 

part by excessive inflammation (e.g., amyotrophic 

lateral sclerosis) [64]. 
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Mitochondrial dysfunction 
 

The signaling functions of vascular mitochondria are 

thought to be mediated largely by the production of ROS 

at low, physiological levels [65]. However, dysregulation 

of mitochondria-derived ROS production also has the 

potential to lead to pathophysiological sequelae that 

disrupt other mitochondrial-specific functions, cellular 

homeostasis, and ultimately peripheral vascular function 

[65]. Indeed, with aging there is a marked increase in the 

production of mitochondrial ROS in the vasculature  

[66, 67] and this excessive production of mitochondria-

derived ROS directly contributes to peripheral vascular 

dysfunction with aging, which has been previously 

reviewed in detail [65]. Moreover, suppressing tonic 

excess production of mitochondrial ROS in the 

vasculature with a mitochondria-targeted antioxidant 

(e.g., oral MitoQ supplementation) has shown to reverse 

carotid artery endothelial dysfunction [68, 69] and aortic 

stiffness (Gioscia-Ryan et al., 2018) in old mice and 

increase endothelial function and lower aortic stiffness in 

a pilot clinical trial in ML/O adults [70]. The findings of 

this pilot trail are currently being translated in a properly-

powered placebo-controlled randomized clinical trial 

(NCT02597023) [71]. 

 

Mitochondrial dysfunction, characterized in part by 

excessive mitochondrial ROS production, is also highly 

implicated in brain aging [72, 73], which has been 

reviewed in detail elsewhere [74]. Briefly, the 

accumulation of mitochondrial ROS has been shown to 

directly damage neurons in various brain regions, 

ultimately perpetuating the pathophysiology that leads 

to the development of Alzheimer’s disease and related 

dementias [75]. Like peripheral vascular function, 

MitoQ supplementation promotes healthy brain aging. 

For example, supplementation with MitoQ inhibits 

phenotypes of brain aging in mouse [76, 77] and C. 

elegans [78] models of Alzheimer’s disease. Moreover, 

SS-31 (a mitochondria-targeted antioxidant peptide) has 

shown to improve cognitive function in old mice [79]. 

There is an ongoing placebo-controlled randomized 

clinical trial seeking to determine the efficacy of MitoQ 

supplementation for improving cognitive function in 

older adults (NCT06027554). 

 

Cellular senescence 
 

Cellular senescence is a multi-faceted stress response in 

which cells undergo a largely permanent cell cycle 

arrest but remain metabolically active [80]. Key 

characteristics of senescent cells are an upregulation of 

cell cycle arrest genes/proteins (e.g., cyclin dependent 
kinases [p16/p21]) and secretion of pro-inflammatory 

factors, broadly referred to as the senescence-associated 

secretory phenotype (SASP) [80]. Physiological levels 

of cellular senescence aid in processes such as wound 

healing [81] and cancer suppression [82]; however, with 

aging there is an excessive accumulation of senescent 

cells, and this accumulation is thought to promote 

diseases of aging in part via the SASP [83]. Indeed, 

cellular senescence and the SASP have shown to 

directly increase ROS production [80]. 

 

An elevated abundance of senescent cells in the 

vasculature has shown to be inversely related to peripheral 

endothelial function in ML/O adults [84], and genetic-

based clearance of excess senescent cells in old mice has 

been demonstrated to reverse carotid artery endothelial 

dysfunction and aortic stiffness [85], ultimately 

establishing cellular senescence as a viable therapeutic 

target for improving peripheral vascular function with 

aging. We and others’ [85, 86] have shown that targeting 

cellular senescence with synthetic pharmacological-based 

senolytic therapy (e.g., administration of compounds that 

can selectively clear senescent cells) can improve 

peripheral vascular function in old mice, thus, providing 

essential proof-of-principle efficacy for the potential use 

of senolytic therapy to improve peripheral vascular 

function with aging. 

 

Cellular senescence is also implicated in brain aging, 

which was recently reviewed in detail [87]. For 

example, select biomarkers of cellular senescence in 

peripheral blood cells are associated with mild cognitive 

impairment in older adults [88], and cellular senescence 

has been shown to directly mediate cognitive function 

in old rats [89] and mice [90]. Moreover, senescent cells 

have been demonstrated to accumulate in aged human 

brain organoids [91] and in brains of mice with 

accelerated tau burden and the excess accumulation of 

senescent cells in both models can be suppressed with 

synthetic pharmacological senolytic therapy. Moreover, 

senolytic therapy reduces neurofibrillary tangles in mice 

with accelerated tau burden [92]. Together, these 

results, like peripheral vascular function, establish 

cellular senescence as a putative therapeutic target for 

enhancing brain health with aging. 

 

Deregulated nutrient sensing 
 

Deregulated nutrient sensing is characterized largely by a 

reduction in the bioavailability of nicotinamide adenine 

dinucleotide (NAD+) but also consists of reduced 

abundance and activity of sirtuin enzymes, adenosine 

monophosphate kinase, and heightened activation of the 

mammalian target of rapamycin. Of these, reduced NAD+ 

bioavailability has emerged as a highly compelling 

nutrient sensing-related therapeutic target for improving 

peripheral vascular and cognitive function with aging, as 

reduced bioavailability of NAD+ is a common 

manifestation of advancing age and impaired NAD+ 
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bioavailability has been linked to peripheral vascular 

dysfunction and cognitive impairment with aging. 

Moreover, oral consumption of the NAD+ boosting 

compound nicotinamide riboside (NR) has shown to be 

well-tolerated, safe and efficacious for increasing NAD+ 

bioavailability in ML/O adults [93]. Another commonly 

used NAD+ boosting compound that has shown to be safe 

for human consumption is nicotinamide mononucleotide 

(NMN) [94]. Oral NMN supplementation has been 

demonstrated to fully reverse carotid artery endothelial 

dysfunction and aortic stiffening in old mice [95] and  

in a pilot clinical trial, supplementation with NR has 

shown to lower aortic stiffness (no influence on 

endothelial function) in ML/O adults [93]. The findings 

of this pilot trail are currently being translated in a 

properly-powered placebo-controlled randomized clinical 

trial (NCT03821623) [96]. 

 

In addition to improving peripheral vascular function with 

aging, NMN supplementation has shown to attenuate 

cognitive impairment in old mice [97] and in a rat model 

of Alzheimer’s Disease [98]. Moreover, supplementation 

with NR has been demonstrated to restore cognitive 

function in old mice [99] and in a mouse model of 

Alzheimer’s disease [100]. However, results supporting 

the benefit of NAD+ boosting compounds for improving 

cognitive function in ML/O adults is less clear, which has 

recently been reviewed in detail [101]. 
 

LIFESTYLE AND SELECT PHARMACOLO-

GICAL STRATEGIES FOR TARGETING THE 

SHARED MECHANISMS OF PERIPHERAL 

VASCULAR DYSFUNCTION AND BRAIN 

AGING 
 

First-line therapy for improving peripheral vascular 

health with aging is increased physical activity and 

aerobic exercise [102]. However, select dietary and 

pharmacological (natural and synthetic) interventions 

have also emerged as putative therapies for improving 

age-related peripheral vascular function [35]. Growing 

evidence suggest that these interventions may also 

improve cognitive function and reduce the risk for 

dementia [103]. Below, we describe evidence (also 

shown in Table 1) supporting the role for increased 

physical activity and aerobic exercise, as well as certain 

whole dietary patterns and pharmacological agents for 

improving both peripheral vascular and cognitive 

function with aging (Figure 5). 
 

Physical activity/aerobic exercise 
 

Increased physical activity, by way of aerobic exercise, is 

considered first-line therapy for improving peripheral 

vascular function with aging [102], particularly in ML/O 

adult men, with supportive but mixed evidence regarding 

its efficacy for improving peripheral vascular function in 

estrogen-deficient postmenopausal women [104]. The 

beneficial effects of aerobic exercise on the peripheral 

vasculature have shown to be directly mediated by or 

associated with reduced inflammation [55, 105–107], 

improved mitochondrial function [66, 106, 108] and 

lower burden of cellular senescence [84], which has been 

reviewed in detail elsewhere [109]. 

 

The mechanisms by which physical activity/aerobic 

exercise improve aspects of brain health/cognitive 

function are less clear; however, evidence points 

towards the fact that increased physical activity [110] 

and other forms exercise training (e.g., high-resistance 

inspiratory muscle strength training) [111] promote 

increased cerebrovascular function in ML/O adults. 

These precise mechanisms are under investigation, but 

evidence shows that exercise increases circulating levels 

of the myokine Irisin, which is associated with 

improved cognitive function [112, 113]. In addition, 

physical activity increases circulating levels of brain-

derived neurotropic factor (BDNF), which heightens 

neuroplasticity [114]. Therefore, it has been argued that 

physical activity/exercise may be the most effective 

way to improve both vascular health and cognitive 

function [103]. Additionally, recent evidence suggests 

that aerobic exercise might be an effective intervention 

to reduce dementia risk, although more work needs to 

be completed in this area [115]. 

 

Dietary approaches 

 
Nutrition can also have a profound impact on peripheral 

vascular health. Interestingly, most nutritional 

interventions/guidelines that improve peripheral vascular 

health also improve brain health. Evidence from human 

trials show that these improvements are mediated by 

numerous cellular and molecular pathways that intersect 

with the “hallmarks” of aging, including reduced 

inflammation, improved mitochondrial function, and 

lower burden of cellular senescence [3]. Below, we 

highlight select dietary approaches that have emerged as 

promising strategies for improving both peripheral 

vascular and cognitive function with aging. 

 
Mediterranean diet 

The Mediterranean diet, characterized by limited intake 

of red meat, saturated fats, and dairy products with high 

intake of fruits, vegetables, whole grains, beans, 

nuts/seeds, and olive oil (monounsaturated fats) [116], 

lowers the risk for CVD [117]. This dietary pattern is 

associated with reduced oxidative stress and 

inflammation (likely mediated by greater intake of 

soluble fiber and antioxidant-rich food sources) [118, 

119] and reduced cellular senescence burden in the 

peripheral vasculature [120], thus potentially explaining 
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its benefit on peripheral vascular health. Indeed, 

consumption of a Mediterranean-style diet has shown to 

directly lower aortic stiffness in ML/O adults [121]. 

Systematic reviews have also suggested that long-term 

adherence to this dietary pattern protects against 

cognitive decline with aging [122] and more recent 

evidence suggests that this diet is associated with less 

postmortem LOAD pathology (e.g., Aβ plaques) [123]. 

 
Japanese dietary patterns 

Traditional Japanese diets are similar to the 

Mediterranean diet and contain high amounts of 

vegetables, fruits, legumes, soy, and omega-3 fatty 

acids, but low amounts of red meat, saturated fats, and 

dairy products [124, 125]. These diets are high in 

antioxidant-rich foods which may partly explain the 

lower CVD risk associated consumption of these diets 

[126–128]. Moreover, these diets are traditionally lower 

in sodium, which could directly augment peripheral 

vascular function in ML/O adults [129]. In addition to 

improving peripheral vascular health, recent prospective 

evidence shows that long-term adherence of this dietary 

pattern may be associated with decreased risk of 

dementia in older adults [130], although more carefully 

controlled trials are necessary to assess the links 

between this dietary pattern and dementia risk. 

 
The Finnish geriatric intervention study to prevent 

cognitive impairment and disability [FINGER] diet 

The FINGER nutritional intervention was a double-

randomized controlled trial in which individuals with 

marked CVD and dementia risk factors were assigned to 

a two-year multidomain intervention consisting of 

controlled dietary guidelines, supervised exercise, 

cognitive training, and CVD risk monitoring. The diet 

consisted of limited protein intake (10–20% of daily 

energy), low fat intake (25–35% daily energy with <10% 

from saturated sources and >15-30% from unsaturated 

fat), and moderate carbohydrate intake (45–55% daily 

energy with <10% from refined sugar). This diet also 

calls for high fiber intake and limited salt/alcohol 

consumption [131]. In addition to improving well-

established CVD risk factors (e.g., glucose and BMI), 

adherence to this diet also improved cognitive function in 

older adults as measured by a battery of tests [131]. 

However, it remains to be determined whether this diet 

directly improves peripheral vascular function, but it is 

likely, considering the abundance of antioxidant-rich 

foods and low sodium content. 

 
Intermittent fasting 

Intermittent fasting [IF] is a type of time restricted 

eating (extended time with little or no energy intake), 

which is thought to promote healthy aging through 

activation of nutrient sensing pathways (e.g., enhanced 

sirtuin activity and reduced signaling through the 

mammalian target of rapamycin pathway) [132, 133]. 

There are various types of IF including prolonged 

fasting, alternate day fasting, and time-restricted feeding 

[132, 134], but interestingly not all of these paradigms 

have been shown to improve peripheral vascular 

function and reduce CVD risk [135, 136]. These results 

may be partly explained the varying durations (e.g., 6 

hour vs 24 hour fast) of the each intervention; however, 

robust evidence shows that IF can reduce oxidative 

stress and inflammation, improve mitochondrial 

function, and lower cellular senescence burden [137], 

which collectively could confer benefits in peripheral 

vascular function. Recent evidence also shows that IF 

benefits cognitive function, possibly via increased 

hippocampal neurogenesis in humans [138], and may 

also lower risk of dementia [139]. In this regard, more 

carefully controlled trials are needed to determine 

optimal length and duration of fasting paradigms. 

 

PHARMACOLOGICAL AGENTS 
 

NO-boosting compounds (e.g., Sodium nitrite; 

Nitrate-rich beet root juice) 
 

As Nitric oxide (NO) is a major mediator of peripheral 

vascular function and its bioavailability decreases with 

advancing age, interventions aimed at directly enhancing 

NO bioavailability have gained much attention. A way  

to accomplish this is to target the nitrate-nitrite-nitric 

oxide pathway, which can be accomplished by directly 

supplementing with nitrite. For example, oral 

consumption of sodium nitrite has shown to directly 

restore peripheral vascular function in old mice [140] and 

ML/O adults [141, 142], by improving mitochondrial 

function [142]. Moreover, oral consumption of nitrate-

rich beet root juice has shown to augment peripheral 

vascular function in postmenopausal women [143].  

In addition to the improvements in peripheral  

vascular function, sodium nitrite supplementation has 

shown promise for improving cognitive function in 

ML/O adults [144]. 

 

Antihypertensives 
 

As described above, the links between blood pressure 

and dementia risk are surprisingly unclear [145]. 

Several uncertainties surround current guidelines for the 

management of blood pressure to maintain brain health 

with aging, including optimal blood pressure in mid-life 

(including blood pressure variability) and the types of 

antihypertensive medications [146]. Nonetheless, 

evidence suggests that proper management of blood 

pressure in mid-life is critical in delaying cognitive 

decline [147] and recent evidence suggests that 

antihypertensive medications may even protect against 

dementia [148]. Clinical/neuropathological data also 
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Table 1. Clinical evidence regarding the potential efficacy of pharmacological and lifestyle interventions for 
improving peripheral vascular function and brain health with aging. 

Intervention Population Clinical outcomes References 

Lifestyle    

Aerobic Exercise Healthy midlife/older adults 

- Improved endothelial function in men 

- Inconsistent improvements in endothelial 

function in estrogen deficient 

postmenopausal women 

- Reduced large elastic artery stiffness 

Most recently 

reviewed in [109] 

High-Resistance 

Inspiratory Muscle 

Strength Training 

 

- Improved cerebrovascular endothelial 

function 

- Improved peripheral vascular endothelial 

function 

- No change in large elastic artery stiffness 

[111, 149]  

Time-Restricted Feeding 
Healthy midlife/older adults (55-79 

years; n=14) 

- No influence on peripheral vascular 

function 
[136] 

Intermittent Fasting Adults 35-75 years with obesity 
- Enhanced hippocampal neurogenesis and 

memory 
[138] 

Pharmacological    

Targeting Excessive 

Inflammation 
   

Salsalate 
Healthy midlife/older adults (50-79 

years; n=9) 
- Reduced aortic stiffness [55] 

Salsalate 

Overweight or obese midlife/older 

adults  

(52-68 years; n=14) 

- Improved peripheral vascular endothelial 

function 
[56] 

Salsalate 
Healthy midlife/older adults (50-75 

years; n=16) 

- Improved peripheral vascular endothelial 

function 
[150] 

Curcumin 
Healthy midlife/older adults (45-74 

years; n=20) 

- Improved peripheral vascular endothelial 

function 

- No influence on large elastic artery 

stiffness 

[58] 

Targeting Excessive 

Mitochondrial Oxidative 

Stress 

   

MitoQ 
Healthy midlife/older adults (60-79 

years; n=20) 

- Improved peripheral vascular endothelial 

function 

- Reduced aortic stiffness in those with 

elevated aortic stiffness at baseline 

[70] 

Targeting Reduced NAD+ 

Bioavailability 
   

Nicotinamide Riboside 
Healthy midlife/older adults (55-79 

years; n=24) 

- Treatment was safe 

- Reduced aortic stiffness 

- No influence on endothelial function 

[93] 

Nicotinamide Riboside 
Adults with Parkinson’s disease 

(mean age 64 years; n=30) 

- Treatment was safe 

- Modulated cerebral metabolic function 
[151] 

Targeting Reduced Nitric 

Oxide Bioavailability 
   

Inorganic Nitrite 
Healthy midlife/older adults (50-79 

years; an=49; bn=9) 

- a,bImproved peripheral vascular endothelial 

function 

- bReduced large elastic artery stiffness 

a - [142] 

b - [141, 142] 
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suggest that the use of antihypertensives reduce 

cerebrovascular disease and Aβ pathology [152]. The 

mechanisms linking hypertension to dementia risk are 

unclear, but most likely involve aortic stiffening at the 

level of the peripheral vasculature and white matter 

lesions and cerebromicrovascular injury at the level  

of the brain [153], which can contribute to cortical 

atrophy [154]. 

 

Senolytics 
 

As noted above, increased cellular senescence burden 

contributes to both peripheral vascular and cognitive 

dysfunction with aging, and synthetic pharmacological 

senolytics have shown promise (mostly in preclinical 

models) for enhancing function. However, there is 

limited translational potential of these senolytic 

approaches (e.g., ABT-263 [Navitoclax] and Dasatanib + 

quercetin [D+Q]) due to potentially adverse safety 

profiles in healthy ML/O adults; however, these senolytic 

interventions may we warranted in patient populations 

with severe disease conditions (e.g., idiopathic 

pulmonary fibrosis) [155]. To overcome this barrier, 

natural food-derived senolytic compounds have emerged 

as a promising strategy, and of the compounds screened 

to date, fisetin (commonly found in foods such apples, 

strawberries and onions) has shown the greatest promise 

[156]. Indeed, we recently found that oral intermittent 

(one week on; two weeks off; one week on) 

administration of fisetin improved carotid artery 

endothelial function and lowered aortic stiffness in old 

mice [157], and these results are currently being 

translated to ML/O adults to determine if oral intermittent 

fisetin supplementation can improve peripheral vascular 

endothelial function (NCT06133634). 

 

In an ongoing clinical trial assessing the safety and 

efficacy of D+Q-based senolytic therapy for modulating 

the progression of Alzheimer’s Disease in patients with 

a mild Alzheimer’s Disease diagnosis (NCT04063124), 

 

 
 

Figure 5. Lifestyle and select pharmacological strategies for targeting the shared mechanisms of peripheral vascular 
dysfunction and brain aging. 
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it is clear that the senolytic compounds enter the cerebral 

circulation (e.g., the cerebrospinal fluid) but the study is 

ongoing, thus it remains to be determined if senolytic 

therapy with D+Q, can improve Alzheimer’s Disease-

related phenotypes [158]. Importantly, D+Q appeared to 

be safe in the preliminary analysis of this study, which 

could shift the way the field views the translational 

potential of D+Q (i.e., beyond only dosing patients with 

severe disease states). Currently, no studies are ongoing 

or have been completed assessing the efficacy of oral 

fisetin supplementation for improving cognitive function. 

 

CONCLUSIONS, RESEARCH GAPS AND 

FUTURE DIRECTIONS 
 

Aging is the major risk factor for CVD and Alzheimer’s 

disease/related dementias. Increased CVD risk with aging 

is due importantly to the development of peripheral 

vascular dysfunction, characterized by large elastic artery 

stiffening and endothelial dysfunction. Currently, the 

pathophysiological sequalae of brain aging is not 

completely understood, but changes in peripheral 

vascular function could mediate the progression of 

Alzheimer’s disease and related dementias. In this 

review, we discussed the shared cellular/molecular aging 

“hallmarks” underlying both peripheral vascular function 

and cognitive impairment, and how these “hallmarks” 

may be viewed as viable therapeutic targets for reducing 

CVD and Alzheimer’s disease and related dementias risk 

in ML/O adults. Finally, we highlight established 

lifestyle and select pharmacological interventions that 

could be used to target these “hallmarks” to improve 

peripheral vascular and cognitive function with aging. 

There remain several important knowledge gaps in the 

field; the following represent some potential future 

biomedically significant directions for research related to 

healthy CV and brain aging (Figure 6). 

 

Considering sex as a biological variable 
 

Biological sex is a non-modifiable risk factor for 

peripheral vascular dysfunction and various types of 

dementia. For example, ML/O adult estrogen deficient 

postmenopausal women are at greater risk of developing 

CVD [159] and vascular dementia and LOAD [160, 161] 

relative to age-matched men. The precise mechanisms 

underpinnings these phenotypes are not completely clear 

but may in part be explained the progressive loss of 

peripheral vascular function over the menopausal 

transition [162, 163], as a similar loss in gonadal 

function does not consistently occur in age-matched 

men. Moreover, the greater prevalence of dementia in 

women could be explained by the fact that women 

survive to older ages when compared to men [164], or 

due to the potential protective effect of estrogen on brain 

function, as physiological levels of estrogen mitigate 

excessive oxidative stress [165, 166]. Thus, there is a 

clear need to more comprehensively understand how 

biological sex and gonadal status influence the relation 

between peripheral vascular function and cognitive 

health with aging and the cellular/molecular mechanisms 

underpinning these differences. 

 

Basic science experimental approaches to look 

at the crosstalk between the peripheral vascula-

ture and the brain through the lens of aging 

“hallmarks” 
 

In recent years, there has been accelerated development 

and utility of organoid models to better understand 

mechanisms underlying in vivo physiology. For 

example, vascularized brain organoids have emerged as  

 

 
 

Figure 6. Conclusions, research gaps, and suggested 
future directions. 
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an experimental tool for providing novel insight into 

human brain development and disease [167], such that 

these organoid models can be manipulated ex vivo and 

successfully grafted in vivo. Moreover, sophisticated 

experimental approaches using co-culture systems (i.e., 

co-culturing peripheral vascular cells with brain cells) 

may be used to directly interrogate how adverse 

changes in aging “hallmarks” in peripheral vascular 

cells influence the health and function of brain cells. 

 

Genetic models to better understand the role of 

peripheral vascular dysfunction in mediating 

brain aging 
 

Several pre-clinical genetic models have been utilized to 

better understand how peripheral vascular dysfunction 

mediates brain aging [168]. One such example is the 

elastin haploinsufficient (single deletion of the Elastin 

gene) mouse model. Phenotypically, this model exhibits 

accelerated large elastic artery (e.g., aorta) stiffening, 

which allows for the opportunity to study the influence 

of aortic stiffening independent of advancing/advanced 

age [169]. Interestingly, results from studies using this 

model indicate that large elastic artery stiffness has a 

greater effect on inducing endothelial dysfunction in 

cerebral arteries when compared to peripheral arteries 

and that these effects are likely mediated by reduced NO 

bioavailability and excessive ROS-related oxidative 

stress [169]. Additional studies using this mouse model 

show that large-artery stiffness impairs spatial memory 

[170]. In addition to the elastin haploinsufficient mouse, 

the Fibrollin-1 haploinsufficient (single deletion of the 

Fibrollin-1 gene, which provides structural support to 

elastic tissue) mouse model has provided some insight 

into how large elastic artery stiffness affects the brain 

[171]. Interestingly, this model exhibits higher than 

average levels of reactive oxygen species in brain 

vasculature, but it is unclear if this effect is due to 

increased large artery stiffness or as a direct result of the 

genetic deletion [42]. Nonetheless, the continued use of 

these existing mouse models, or the development of new 

models (perhaps a model with elastin haploinsufficiency 

strictly in the peripheral vasculature), would provide a 

key opportunity to more comprehensively understand the 

contributions of peripheral vascular dysfunction to brain 

aging. 

 

Properly powered placebo-controlled randomized 

clinical trials to determine the efficacy of aging 

“hallmark”-targeted therapies for improving 

peripheral vascular function and brain health 

with aging 
 

Although there are numerous ongoing clinical trials 

seeking to determine the efficacy of targeting the 

“hallmarks” of aging to improve peripheral vascular and 

cognitive function, many of these studies strictly focus 

on one outcome or the other. Given the influence of 

peripheral vascular function on brain health discussed 

throughout this review, it would be highly advantageous 

to study both concomitantly. There are obvious 

mechanistic limitations to this approach, as one could 

not clearly discern whether the intervention-mediated 

improvements in brain health were directly driven by 

improvements in peripheral vascular function or via a 

direct effect on the brain; however, these studies could 

provide essential information regarding how the aging 

“hallmarks” integrate into the temporal progression of 

peripheral vascular function-induced changes in brain 

health. 
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