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INTRODUCTION 
 

Although the morbidity and mortality of lung cancer 

was reported to be declined recently, especially non-

small cell lung cancer (NSCLC), they were still higher 

than other cancer types [1].  
 

Immune-checkpoint blockade (ICB), targeting PD-1 

or PD-L1, exhibited exciting antitumor capabilities, 

and greatly improved prognosis for patients in 

multiple tumors [2–4]. However, only around 30%  

of the lung cancer patients could benefit from  

PD-1 blockade treatment [5], and differences response 

from individuals were also observed in NSCLC 

patients [6]. So, investigation of cellular and molecular 

mechanisms of response for PD-1 inhibitor would 

enable us to understand the prognosis better  

and develop appropriate strategy for individual 

immunotherapy. 

 
Although traditional bulk RNA sequencing  

reported multiple biomarkers (such as EGFR, ERBB2, 

and BRAF, etc.) for lung cancer, it encountered  

great challenges in illustrating gene regulation in 

cellular subtypes, such as CD4 regulation T cells,  

or exhausted CD8+ T cell which played crucial roles 

in tumor progress [7, 8]. Single-cell RNA sequencing 

enabled us to in-depth characterize of cellular subtype 

in TME, for example, M1/M2 macrophage ratio 

influencing the response rate for anti-PD-1/PD-L1 

therapy [6], exhausted CD8+ T cells enriched in 

cancer tissues [9], etc.  
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ABSTRACT 
 

Exploring the molecular mechanisms of PD-1/PDL-1 blockade for non-small cell lung cancer (NSCLC) would facilitate 
understanding for tumor microenvironment (TME) and development of individualized medicine. To date, 
biomarkers of response to PD-1 blockade therapy were still limited. In this study, we hypothesize that cell type in 
the tumor microenvironment can influence the effect of PD-1 blockade immunotherapy through specific genes. 
Therefore, we re-analyze the single-cell RNA sequencing data and validation in tissue from lung adenocarcinoma 
patients. Dynamic changes of cellular subpopulation were observed after anti-PD-1 immunotherapy among TMEs 
between primary/metastasis or good/poor response patients. Non-exhausted CD8 T cells and dysregulated genes 
were observed in responsing patients from PD-1 blockade therapy. Among all changed genes, JUN, involved in PD-1 
blockade immunotherapy pathway, and could be considered as a PD-1 responsing biomarker. 
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T cell exhaustion is characterized by the gradual 

decline of effector function (reduction in IL-2,  

TNF-α, and IFN-γ production) and the continued 

presence of inhibitory receptors such as PD-1, Tim-3, 

CTLA-4, lymphocyte-activation gene 3 (LAG-3), and 

CD160, accompanied by a distinct transcriptional 

profile separate from that of functional effector or 

memory T cells [10]. Terms such as tolerance, anergy, 

and exhaustion are utilized to depict T cells with 

diminished responsiveness. Tolerance denotes the 

primary mechanism to forestall autoimmunity through 

the central or peripheral inactivation of self-reactive  

T cells [11, 12]. Anergy characterizes T cells that  

are incompletely activated due to the absence of co-

stimulatory signals and/or significant co-inhibitory 

stimulation [13, 14]. Exhaustion, among these terms, 

specifically delineates a functional yet hyporesponsive 

state resulting from initial activation in the context  

of chronic infection or tumor, distinguishing it from 

tolerance and anergy. 

 
Previous study demonstrated that αPD-L1 treatment 

leads to interleukin-7 receptor (IL-7R) (CD127) 

expression on exhausted T cells during chronic 

lymphocytic choriomeningitis virus (LCMV) infection 

which could make exhausted CD8+ T cells responsive 

to IL-7, a key cytokine known for promoting long-

term survival of mature effector CD8+ T cells  

by upregulating the anti-apoptotic marker Bcl-2 and 

the generation of memory T cell phenotype [15]. 

Further study found that treatment with IL-7 alone  

did not significantly alter the course of chronic 

LCMV infection, although it was crucial for the 

homeostatic proliferation of memory CD8+ T cells. 

However, combined therapy using αPD-L1 and IL-7 

showed additive effects, leading to the expansion  

of LCMV-specific CD8+ T cells producing both  

IFN-γ and tumor necrosis factor-alpha (TNF-α). IL-7 

appears to collaborate with IL-15 to maintain Bcl-2 

expression, essential for signal transducer and 

activator of transcription 5 (STAT-5) phosphorylation 

and the generation of long-lived effector CD8+ T  

cells [16]. While αPD-L1 treatment increases  

STAT-5 phosphorylation in exhausted CD8+ T cells 

upon additional IL-7 stimulation, no difference was 

observed in the expression of the IL-15 receptor 

CD122 between treated and untreated exhausted 

CD8+ T cells in chronically LCMV-infected hosts. 

This disparity in homeostatic cytokine receptor 

expression patterns may contribute to only partially 

improved survival of αPD-L1 treated exhausted  

CD8+ T cells, even in an antigen-free environment. 

These findings highlight significant changes occurring 

possibly at both transcriptional and epigenetic levels 

in exhausted CD8+ T cells, which are not adequately 

altered by αPD-L1 treatment [15]. 

c-Jun amino-terminal kinase (c-Jun), p38MAPK and ERK 

are three parallel pathways involved in the MAPK 

pathway [17]. Recent studies focused on the association 

between the PD-1/PD-L1 axis and the MAPK pathway. 

Stutvoet et al. found that inhibition of the MAPK pathway 

prevented epidermal growth factor and IFN-γ-induced 

CD274 mRNA and PD-L1 protein and membrane 

upregulation in lung adenocarcinoma cells [18]. Jalali et 

al. revealed p-P38 and p-ERK were decreased in all HL 

lines after using an anti-PD-L1 antibody [19]. 

 

In this study, we hypothesized that differences in the 

response of the PD-1 inhibitor among lung cancer 

patients was related to key genes and lymphocytes 

paracrine activation, and reanalyzed the PD-1 blockade 

responsing associated single-cell RNA sequencing 

(scRNAseq) data shared by Professor Zemin Zhang to 

investigate the cellular and molecular mechanisms for 

PD-1 blockades. 

 

MATERIALS AND METHODS 
 

Data process and tissue specimens 

 

The scRNAseq data of eight patients were collected 

from GSE179994 [20]. The data comprised five male 

and three female patients ranging in age from 48 to 73 

years (all: 60±8.8; male: 57.8±9.7; female: 63.7±8.3) 

with a clinical diagnosis of LUAD. All patients were 

treated with the same strategy (pembrolizumab + 

carboplatin + pemetrexed). The data were divided into 

groups based on the selected sample data included 

biopsy site (such as lung or lymph node metastasis), 

response to therapy (good or poor), and all data  

were performed quality control (QC) (Table 1). The 

metastasis data from PD-1 blockade good responsing 

patients were defined as Apre group (before treatment) 

and Apost group (after treatment); the metastasis data 

from PD-1 blockade poor responsing patients were 

defined as Bpre group (before treatment) and Bpost 

group (after treatment); the primary data from PD-1 

blockade good responsing patients were defined as 

Cpre group (before treatment) and Cpost group (after 

treatment). 

 

This study was approved by the Center Ethics 

Committee of Beijing Chest Hospital (JYS-2021-011). 

Signed informed consents were collected from all 

participants. 22 biopsies from LUAD patients were 

collected and stored at -80° C in RNAlater (Thermo 

Fisher Scientific, USA).  

 

scRNAseq data processing and clustering 

 

The human reference genome (vGRCh38-3.0.0)  

was downloaded from the 10X Genomics website in 
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February 2022 (https://cf.10xgenomics.com/supp/cell-

exp/refdata-gex-GRCh38-2020-A.tar.gz). A raw and 

filtered RNA-expression matrix was generated by 

Kallisto/bustools (kb, v0.24.4) pipeline and mapped  

to the reference genome. Single-cell counts of each 

sample were generated by kb to count. Then, the 

features of the filtered, barcode, and matrix files were 

analyzed using an scRNAseq AnaSys™ platform 

(Digitf bioctech, Beijing, China), which was integrated 

by Python (v3.8.10), anndata (ad) (v0.7.6), and scanpy 

(sc) (v1.7.2) packages. For further analysis, the cells 

and genes of the sample data were filtered using  

the sc.pp.filter_cells and sc.pp.filter_genes functions of 

the scRNAseq AnaSys™ platform. 

 

To reduce the technical defects of the capture of low-

quality cells, doublets cells, etc., cells were filtered 

based on the following criteria: 1) < 1,000 or > 25,000 

unique molecular identifiers (UMIs, representing unique 

mRNA transcripts); 2) < 500 or > 5,000 genes in each 

sample; or (3) > 10% UMIs derived from mitochondrial 

genes. In the scRNAseq AnaSys™ platform, scanpy’s 

external module Scrunlet was used to identify potential 

doublet cells using default parameters [21, 22]. Cells 

were labeled on predicted results and filtered out.  

After implementing QC procedures, the gene expression 

matrix was normalized using tools in the scRNAseq 

AnaSys™ platform. Subsequently, the normalized 

counts were natural logarithm transformed (X = Log  

(X + 1)) using the sc.pp.log1p function, which is 

integrated into the scRNAseq AnaSys™ platform. The 

log-transformed expression values of each sample were 

used for downstream analysis. 

 

Briefly, the clustering analysis of cell types and 

subtypes was composed of three steps. The first  

step (Louvain resolution = 2.0) was performed on all 

cells and identified 13 clusters for the subtype cells, 

including C1 (cluster)_CD4 naïve T cells (marker: 

CCR7), C2_CD4 central memory T cells (Tcm) 

(markers: ANXA1, LMNA, MYADM and RGCC), 

C3_CD4 T effector memory cells (Tem) (GZMA, 

CCL5 and GZMK), C4_CD4 CD69 T cells (markers: 

FOS, FOSB and DUSP1), C5_CD4 ISG15 T cells 

(markers: IFI27, ISG15, IFI6 and LY6E), C6_CD4 RPL 

T cells (markers: RPS29, RPL41, RPS27 and TCF7), 

C7_CD4 Th1-like cells (markers: CXCL13, TOX, 

PDCD1 and IFNG), C8_CD4 Treg cells (markers: 

LAYN, CCR8 and FOXP3), C9_CD4 T proliferation 

cells (markers: MKI67, STMN1, TYMS, TUBA1B, 

YUBB, UBA52, CRIP1, YNFRSF9 and CD69), 

C10_CD4 XCL1 T cells (markers: XCL1, XCL2, 

MYADM, CAPG and CD69), C11_CD8 non-exhausted 
T cells (marker: GZMK), C12_CD8 proliferation  

T cells (markers: MKI67, STMN1 and ENTPD1),  

and C13_CD8 exhausted T cells (markers: TIGIT, 

HAVCR2 and ITGAE). For investigating the 

mechanism of anti-PD-1 therapy, the second step (with 

Louvain resolution = 2.0) was performed on CD4 T 

cells and CD8 T cells separately to divide these cells 

into subsets expressing the different immune cell 

lineages of the marker genes. The third step (with 

Louvain resolution = 2.0) was performed on CD8 T cell 

clusters to further divide cells into subclusters, such as 

non-exhausted CD8 T cells (CD8 T non-exhaust), 

exhausted CD8 T cells (CD8 Tex) and proliferation 

CD8 T cells (CD8 T prolif). 

 

LUAD RNA data from TCGA database and Kaplan-

Meier plotter (KM) analysis 

 

Clinical information and transcript per million  

(TPM) data of lung cancer in TCGA database  

were downloaded from the UCSC Xena Data  

center (https://xenabrowser.net/datapages/). The 

Molecular Signatures Database (MSigDB) was down-

loaded from its official website (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). Gene Set Enrichment 

Analysis (GSEA) was performed by clusterProfiler 

(https://github.com/YuLab-SMU/clusterProfiler). Kaplan-

Meier (KM) plotter (https://kmplot.com/) was utilized 

to explore the prognosis of potential key genes. 

 

Bulk-tissue RNA sequencing and data analysis 

 

The total RNA of samples was extracted separately 

from 200~400 mg of homogenized biopsy tissue  

using an RNAsimple Kit (TIANGEN, Cat# DP419, 

China) following the manufacturer’s instructions. RNA 

integrity number (RIN) validation was tested using an 

Agilent RNA 6000 Nano Kit (Agilent, Cat#5067-1511, 

USA). The RIN values for 22 tissue biopsies ranged 

from 7.2 to 8.3 (median: 7.8). To prepare RNA 

sequencing libraries, the total RNA was further purified 

using an RNAclean Kit (Tiangen, Cat# DP210831, 

China) according to the manufacturer’s instructions. 

High-quality DNA-free RNA was used for rRNA 

depletion (TIANSeq rRNA depletion kit, Cat#NR101, 

China) and library preparation with cDNA synthesis 

(TIANSeq Fast RNA Library Kit, Cat#NR102, China) 

following the manufacturers’ instructions. RNA 

sequencing and quality control were performed using 

Illumina HiSeq 2500 sequencing platforms (Illumina, 

USA).  

 

Initial RNA sequencing data analysis and preparation 

were conducted via the RNA sequencing analysis 

pipeline platform v1.0 (Digitf Biotech, Beijing, 

China). This pipeline included fast QC software for 
quality control and reads filtering for adaptor and 

rRNA and mtDNA sequences using Python scripts 

(v1.2). All clean reads were aligned with the human  
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Table 1. Sample data information and key group markers in single cell RNAseq. 

Sample ID Patient ID 
PD-1 Inhibitor 

response 
Biopsy site Timepoint 

A01_ut_meta P010 Yes LN metastasis A01pre 

A02_ut_meta P019 Yes LN metastasis A02pre 

A01_tr_meta P010 Yes LN metastasis A01post 

A02_tr_meta P019 Yes LN metastasis A02post 

B01_ut_meta P001 Yes LN metastasis B01pre 

B02_ut_meta P013 Yes Liver metastasis B02pre 

B02_tr_meta P001 No Right lung tumor B02post 

B02_tr_meta P013 No LN metastasis B02post 

C01_ut_pri P029 Yes Left lung tumor C01pre 

C02_ut_pri P030 Yes Right lung tumor C02pre 

C03_ut_pri P033 Yes Right lung tumor C03pre 

C04_ut_pri P035 Yes Right lung tumor C04pre 

C01_tr_pri P029 Yes Left lung tumor C01post 

C02_tr_pri P030 Yes Right lung tumor C02post 

C03_tr_pri P033 Yes Right lung tumor C03post 

C04_tr_pri P035 Yes Right lung tumor C04post 

 

reference genome (vGRCh38-3.0.0). Transcript 

quantification and gene expression (raw read counts) were 

conducted with Cufflinks (v2.0) to compare reference 

annotations (measured as Transcripts Per Million, TPM).  

 

Immunohistochemistry 

 

IHCs were conducted by the Envision two-step method. 

After paraffin sectioning, the sections were deparaffinized 

using conventional xylene and ethanol, followed by three 

washes with PBS, each lasting 3 minutes. Subsequently, 

the sections were incubated in a dark environment  

with 3% hydrogen peroxide for 10 minutes to block 

endogenous peroxidase activity. The sections were  

then incubated with primary and secondary antibodies. 

Diaminobenzidine (DAB) staining was performed on the 

sections, followed by counterstaining with hematoxylin. 

After gradient dehydration in different concentrations of 

ethanol, the sections were observed under a microscope. 

The antigen used was rabbit polyclonal antibody JUN 

[9165T, CST, US]. We selected 22 sample slices of tissue 

from clinical cases at Tongren People’s Hospital in 

Guizhou based on disease progression and recurrence,  

and utilized the c-Jun monoclonal antibody (9165S, Cell 

Signaling Technology, USA) for staining analysis.  

 

Statistics 

 

Statistical analysis of all data was performed using R 

(v4.0.2) and Python (v3.79) software. Log-rank tests 

were conducted using KM survival analysis. Student’s 

t-tests were conducted for normalized distributed data, 

Mann-Whitney test was used for abnormal distributed 

data. All figures are marked by distinctive symbols 

indicating statistical significance (ns: P>0.05; *: P≤0.05; 

**: P≤0.01; ***: P≤0.001; ****: P≤0.0001). 

 

Software and algorithms 

 

All software and algorithms were included in the 

scRNAseq AnaSys™ platform. Sources and identifiers 

are as follows: 

 

a) Annadata, pypi, https://github.com/theislab/anndata 

b) CellRanger v6.1.0,10x Genomics, 

http://10xgenomics.com 

c) Ggplot2, bioconductor, https://ggplot2.tidyverse.org 

d) Ggpubr bioconductor, 

https://github.com/kassambara/ggpubr 

e) Gseapy v0.10.7, pypi, 

https://pypi.org/project/gseapy 

f) Harmonypy, pypi, 

https://github.com/slowkow/harmonypy 

g) Kallistobustools v0.24.4, pypi, 

https://github.com/pachterlab/kb_python 

h) Scanpy v1.7.2, bioconda, 

https://github.com/theislab/scanpy 

i) Scirpy v0.7.0, bioconda, https://github.com/icbi-

lab/scirpy 

j) Scrublet v0.2.3, pypi, 

https://github.com/swolock/scrublet 

k) Statannot, pypi, https://pypi.org/project/statannot 
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Data availability 

 

All datasets analyzed for this study can be found in the 

Gene Expression Omnibus (GEO) under accession code 

GSE179994 (scRNAseq). 

 

RESULTS 
 

Clinical features and cellular immune micro-

environment of LUAD patients 

 

Based on our inclusion criteria, such as the quality  

of single-cell sequencing data, response of PD-1 

blockades combined chemotherapy treatment, primary 

or metastatic tumor), as mentioned in the Materials and 

Methods section, the study design and bioinformatics 

analysis flow charts were generated (Figure 1A). 

Clinical characteristics and response of PD-1 blockade 

were summarized (Table 1 and Supplementary Table 1). 

 

To investigate the lymphocytes heterogeneity of PD-1 

blockade therapy from biopsy sites, the cell count of 

all samples or groups were visualized (Figure 1B–1D, 

log10 transformed). Then 13 cellular subtypes from 

CD4 or CD8 were obtained (Unsupervised clustering 

by UMAP identified 13 clusters, as mentioned in  

the Methods section) (Figure 1E). R O/E analysis 

among groups (pre and post) demonstrated the change 

of subpopulation from CD4 or CD8 T cells. For 

example, the depletion of CD4 ISG15, CD4 prolif, 

CD4 Treg, CD8 prolif and CD8 Tex were observed in 

post-group, while the CD4 naïve, CD4 RPL, CD4 

Tem, CD4 XCL and CD8 non-exhausted enriched in 

post-group (Figure 1F). To unravel the heterogeneity 

and complexity of cellular subtype among biopsy  

site groups (metastasis or primary) before (pre) and 

after (post) PD-1 blockade therapy, R O/E analysis 

was also performed for three groups (Group A, B, C). 

Depletion trend for CD8 Tex, CD8 prolif, CD4 

ISG15, CD4 Tcm and enrichment for CD8 non-

exhausted were observed in group Apost (Figure 1G). 

Depletion trend for CD4 Tem, CD4 Tcm, CD4 ISG15 

and enrichment for CD4 naïve and CD4 XCL1 were 

observed in group Bpost (Figure 1G). Depletion trend 

for CD4 Treg, CD4 prolif, CD4 ISG15, CD8 prolif 

and enrichment for CD4 RPL, CD4 Tcm, CD4  

Tem and CD8 non-exhausted were in group Cpost  

(Figure 1G). 

 

Characteristics of CD4+ T subtypes, cellular 

interaction of Treg and CD8 subclusters 

 

To further explore the potential mechanism for PD-1 

inhibitor, CD4 or CD8 T cells were extracted, and the 

subpopulation was identified by canonical markers. 

Totally, 10 subclusters of CD4 T cells were obtained in 

pre- or post-group. Enrichment of CD4 naïve and  

CD4 Tem, decrease of CD4 Treg and CD4+T  

prolif were observed in post-group (Figure 2A, 2B). 

Cellular interaction between Treg and CD8 subclusters 

demonstrated the decrease tread between CD8 Tex and 

Treg, CD8 prolif and Treg in post-group (Figure 2C). 

 

To investigate the crosstalk between Treg and  

CD8 T cell sub-clusters before and after PD-1 

blockade therapy, chemokine ligand-receptor pairs 

were analysis. The results revealed a down-regulated 

trend for CCR6-CCL20, CCL5-CCR5, CCL4-CCR5 

and CCL3-CCR5 in pre-group (Figure 2D). To  

further investigate the role of Treg, differential gene 

analysis was performed on Treg cells between before 

and after PD-1 blockade therapy. Pathway analysis 

demonstrated the dysregulated genes involved in lots 

of cancer immune related pathways, such as cytokine-

cytokine receptor interaction, chemokine pathway, 

Th1/Th2 balance pathway and pathways in cancer 

(Figure 2E). Besides, down-regulation of chemokine 

pathway and cytokine-receptor interaction were also 

observed in post-group (Figure 2F). 

 

CD8 T cells were also extracted by canonical CD3E  

and CD8A markers (Figure 3A). Then, the canonical 

markers contributing to three major clusters of CD8 T 

cells (CD8 Tex, CD8 non-exhausted and CD8 prolif) 

were analyzed (Figure 3B). CD8 non-exhaust T cells 

with high expression of GZMK and GZMA indicated its 

killing role on tumor cells, CD8 Tex with PDCD1 and 

TOX suggested its loss of function, and high expression 

of proliferation feature gene (MKI67) and exhausted 

related genes (GZMA, PDCD1, TOX) on CD8 prolif 

suggested the dual characteristics of proliferation and 

exhaustion (Figure 3B and Supplementary Table 3). 

 
JUN is a key marker gene for PD-1 blockade  

 

To investigate the differential of cellular on pre-group 

and post group, three groups were generated following 

biopsy site and PD-1 blockade response (Group A: LN 

meta plus Good; Group B: LN meta plus Poor; Group 

C: Pri plus Good, see “Material and Methods”). Large 

difference of percentage of CD 8 sub-clusters were 

observed between Group Apre and Apost (Figure 3C). 

Significantly interact between Treg and sub-clusters  

of CD8 Tex, CD8prolif in pre-group and post-group 

were obtained (Figure 3D) which indicated that Treg 

and CD8 Tex cells maybe potential targets on PD-1 

blockade therapy.  

 
To explore more detailed mechanism, firstly, the  

PD-1 pathway score between pre-treatment and  

post-treatment among all groups were investigated. 

Interestingly, the PD-1 pathway scores down-regulated 
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Figure 1. Single-cell transcriptional analysis of T lymphocytes from LUAD patient biopsies. (A) Schematic showing the analysis of 
procedures used for this study (created using BioRender.com). (B) Bar plot showing the cell number (Log10 transformed) of samples selected 
from primary patients’ data (ut: untreatment; tr: treatment; meta: lymph node or liver metastasis; pri: primary tumor). (C) Bar plot showing 
the cell number (Log10 transformed) of pre-PD-1 blockade therapy and post-PD-1 blockade therapy. (D) Bar plot showing the cell number 
(Log10 transformed) of groups which were defined by biopsy sites (metastasis or primary tumor) and response of PD-1 blockade therapy 
(good or poor response). (E) Two-dimensional UMAP plot of single-cell RNA-Seq (scRNA-Seq) performed on groups A, B, and C after PD-1 
blockade therapy (horizontal axis: UMAP_1, vertical axis: UMAP_2). (F) Patient group preference for each CD4 and CDD8 subcluster 
measured using the RO/E index (dark blue: enrichment, light blue: depletion). 
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after treatment in good response group (Group A and 

C); and up-regulated after treatment in poor response 

group (Group B) (Figure 4A). Not surprisingly, lots of 

genes changed after treatment (Figure 4B, 4C). Among 

all changed genes, JUN is significantly involved in PD-

1 pathway which indicated its potential role in PD-1 

inhibitor treatment (Figure 4D). Then, the up-regulation 

of the JUN in the good response group (Group A and C) 

was highly correlated with the PD-1 pathway compared 

to that of poor response group (B) (Figure 4B, 4C, 4F; 

P<0.05). To further demonstrate that JUN is associated 

with PD-1 signaling pathway activation (search in 

KEGG database), we extracted the RNA sequencing 

data of lung cancer patients with LUAD from the 

 

 
 

Figure 2. Characteristics of CD4 T lymphocyte subclusters and cellular communication. (A) Two-dimensional UMAP plot of CD4 T 

lymphocyte subclusters (unsupervised clustering distribution) in pre and post groups; UMAP plots are colored based on the cell subtypes of 
the CD4 T cells (horizontal axis: UMAP_1, vertical axis: UMAP_2). (B) Proportions of CD4 and CD8 cell subpopulations between pre-treatment 
and post-treatment using Box plots (value: cell proportion, t test). (C) The cellular communication of regulatory T cells (Treg) and CD8 T 
subclusters in pre and post groups. (D) The ligand–receptor pairs of chemokine receptor and receptor between Treg cells and CD8 subclusters 
(CD8 T non-exhausted, CD8 Tex and CD8 prolif.) using Dot plots (value: Scaled Means, CD8 T non-exhausted: non-exhausted CD8 T cells, CD8 
prolif: proliferation CD8 T cells, CD8 Tex: exhausted CD8 T cells). (E) KEGG pathway enrichment analysis of differential gene expression of Treg 
cells in pre-group and post-group. (F) GSEA curve for chemokine signal pathway (left) and cytokine and cytokine receptor interaction (right) of 
Treg cells in pre-group and post-group. 
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Figure 3. Characteristic of CD8 T lymphocyte subclusters and identified unique cell clusters resistant to PD-1 blockade 
therapy. (A) UMAP plots showing the CD8 T cell subcluster and majority cell types. The dot plots are colored based on CD8A and CD3E gene 

(left: UMAP clustering CD8 T subset, right: Lymphocytes defined by CD3E; horizontal axis: UMAP_1, vertical axis: UMAP_2). (B) The statistics 
of gene markers and cell counts in each subcluster of CD8 T cells using bubble plot (filtered by > 500 cells; CD8 T non-exhausted: non-
exhausted CD8 T cells, CD8 prolif: proliferation CD8 T cells, CD8 Tex: exhausted CD8 T cells). (C) The percentage of CD8 T cell subclusters in 
each group (A: LN metastasis and good response of PD-1 blockade; B: LN metastasis and poor response of PD-1 blockade; C: Primary tumor 
and good response of PD-1 blockade). (D) Hot map showing the cellular interactions between CD4 Treg cells and CD8 T cell subclusters in 
each group (value: Ligand-Receptor cunts). 
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Figure 4. Differential gene expression of PD-1 pathway and KEGG pathway enrichment analysis for CD8 T lymphocytes in 
each group. (A) The PD-1 pathway score of group A, B and C in PD-1 blockade therapy pre-treatment (Apre, Bpre, Cpre) and post-treatment 
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(Apost, Bpost, Cpost) using Box and whisker plots (value: cell proportion, t test, *:P≤0.05; **:P≤0.01; ***:P≤0.001; ****:P≤0.0001). (B) The 
hot plot showing differential genes in all groups before (pre) and during (post) the PD-1 blockade therapy (value: mean z-score; red: high 
expression; blue: low expression). (C) The JUN gene in CD8 T lymphocytes is shown by volcano plot before (pre) and during (post) the PD-1 
blockade therapy (P-value < 0.05; |Log2FC| ≥ 1). (D) GSEA analysis of JUN in lung cancer expression data from TCGA. Result showed JUN 
positively involved in immunotherapy in PD1 blockade (adjust p-value <0.05). (E) The correlation expression between JUN and PDCD1 from 
LUAD RNA data in TCGA database. (F) The box plot showing the JUN expression level of CD8 T lymphocytes in group A, B and C before (pre) 
and during (post) the PD-1 blockade therapy. (G) GSVA analysis of 14 pathways for CD8 T lymphocytes in before (pre) and during (post) the 
PD-1 blockade therapy groups. 

TCGA database to analyze the correlation between  

JUN and PD-1 blockade treatment response. We found 

that the correlation was not high in patients with poor 

PD-1 treatment response (R=0.034, P=0.46, Figure 4E), 

suggesting that it might be not associated with PD-1 

blockade treatment effect in patients. Downregulation 

of antigen process and presentation, ERBB, PPAR, 

WNT and Focal signal pathway were observed after 

PD-1 treatment in good response groups (A and C).  

In contrast, there was no significant change in group B 

(Figure 4G and Supplementary Table 2). 

 

In KEGG database, JUN located down-stream of the 

PD-1 pathway and activated T cells indirectly, which 

enable T lymphocytes to secrete interleukin 2 as well as 

cytokines and chemokines. The high expression level of 

JUN gene may suggest a higher tumor burden and good 

response for blocking PD-1 (https://www.genome.jp). 

 

Validation of the JUN predictive role in effect of PD-

1 blockade therapy by bulk-tissue RNA sequencing 

 

To validate the finding of JUN as a predictive marker  

in PD-1 blockade therapy, biopsy tissues from lung 

adenocarcinoma patients were collected and performed 

RNA sequencing (Figure 5A). Specific immune cell 

patterns in the microenvironment were observed 

between good and poor response (Figure 5B). 

Importantly, JUN was significantly high in the good 

response group (P=0.02, Figure 5C).  

 

A larger cohort from KMplot database of lung cancer 

was enrolled for survival analysis which exhibited  

high expression of JUN resulted a better prognosis 

(P=0.00023, Figure 5D). This finding indicated that 

high expression of JUN may be a predictive factor of 

prognosis. 

 
Validation of the JUN predictive role by IHC 

 

The IHC experiment was performed to further identify 

the JUN expression in lung cancer tissues. Two invalid, 

two SD and eight PR samples were enrolled to verify 

the JUN expression. IHC results showed that the JUN 

was highly expressed in the good response (PR) tissue, 

and low expressed in the poor response (SD or invalid) 

tissue (Figure 6A). Statistical results also showed that 

the JUN was highly expressed in the PR tissue, and low 

expressed in the invalid or SD tissue (Figure 6B, 6C). 

These statistics result also confirmed the findings in the 

single-cell sequencing analysis. 

 

DISCUSSION 
 

Here, we applied bioinformatic re-analysis, clustering T 

lymphocyte cell subpopulations, and RNA sequencing 

throughout the course of anti-PD-1 treatment to validate 

the key finding of previous studies. T lymphocytes,  

as the direct target of PD-1/PD-L1 blockade treatment, 

are known to be highly heterogeneous on the surface of 

T cells, and only a subset of T cells in a subpopulation 

of people are responsive to tumor-related antigens  

[21]. Recent studies reported that the heterogeneity of 

immune cells in LUAD tumor tissue can typically be 

identified using scRNAseq [22–24]. Previous studies  

on the mechanisms of PD-1 blockade therapy have 

primarily focused on the bulk-tissue level, where it is 

difficult to find individual differences that affect the 

response to PD-1 blockade therapy [5, 25, 26]. Single-

cell RNA sequencing technology can be used to 

investigate cellular and molecular mechanisms at the 

single-cell level which provides a deeper understanding 

of the cellular and molecular mechanisms of immuno-

therapy and can be used to find better potential targets 

for predicting response, drug action, drug concomitant 

diagnostic markers, and optimal drug regimens. For 

example, Zhou et al. found that tumor-induced 

macrophages and CD8 T lymphocytes in pancreatic 

tissue-specific resident cells correlated with the 

response to anti-PD-1 therapy using scRNAseq [27]. 

This finding suggests that the response of a solid tumor 

to anti-PD-1 therapy may be correlated with the types 

and numbers of immune cells, including lymphocytes, 

macrophages, and tumor cells. 
 

One of the great challenges in cancer immunotherapy 

research is to elucidate the mechanisms of cancer cell 

growth, migration, metastasis, and immune tolerance.  

In our findings, the scRNAseq data of patients with 

LUAD before and during ongoing treatment with PD-1 

blockade revealed that the immune microenvironment 

of patients with better treatment response included CD4 

Treg, non-exhausted CD8 Tnon-ex, CD4 Tcm, CD4 

Tnaïve, and CD4 Treg subclusters (Figure 1E, 1G).  

In addition, the cumulation of CD8 Tnon-ex of Group 

Bpost was shown to decrease rapidly compared with 
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Figure 5. Validation of JUN expression in the CD8 lymphocytes as an indicative biomarker of sensitivity to PD-1 blockade in 
lung adenocarcinoma. (A) Schematic showing the RNA-seq validation of procedures used for JUN gene (created using BioRender.com).  
(B) Heat map of immune cell fractions in the microenvironment of lung cancer patients (n=17, LUAD: 3 patients, LUSC: 14 patients). (C) Box 
and whisker plot showing the JUN expression level of poor or good response for PD-1 blockade therapy in lung cancer patients using RNA 
sequence (TPM; Log10; good response: n = 8; poor response: n = 9; P=0.02) with non-parametric Wilcoxon test. (D) Kaplan-Meier plotter 
showing the probability of JUN in lung cancer patients (Logrank test, P=0.00023). 
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that of Group Bpre after anti-PD-1 therapy (Figure 3C), 

suggesting a key role for CD8 Tex cells and precursor 

cells in PD-1 blockade treatment; this result agrees with 

those of previous studies [20, 28]. However, due to  

our selection of enrolled patients (refer to methods),  

we also found that some interesting phenomena occur, 

such as abnormal T-cell activation in the poor response 

to anti-PD-1 treatment (Figure 1F, 1G). To examine 

these phenomena, we extracted CD4 T cells and CD8  

T cells cluster data and performed clustering analysis to 

determine if there was an association between the JUN 

gene and PD-1 signaling pathway activation (Figures 

2A, 3A). We found that the JUN gene of CD8 T cells in 

major subpopulations differential expression in the poor 

response to anti-PD-1 therapy group (Figure 4B, 4D). 

These findings suggest that CD8 T lymphocyte sub-

clusters may contribute significantly to the progression 

or regression of LUAD, suggesting a potential 

predictive role of JUN in CD8 T lymphocytes and 

subpopulations. 

 

 
 

Figure 6. Immunohistochemical verification of JUN expression. (A) The JUN expression in good and poor response patients for PD1 

treatment. (B, C) Bar plot for the average optical density of immunohistochemical imaging. PR: Partial response (sample number=8), SD: 
Stable disease (sample number=2), invalid (sample number=2). Good: (sample number=8), poor: (sample number=4). The test was 
performed with non-parametric Wilcoxon test. 
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JUN is a proto-oncogene, which is an AP-1 transcription 

factor subunit that is broadly expressed in normal tissue 

and immune cells. Diseases associated with JUN include 

breast cancer and sarcoma. It has participated many keys 

signaling pathways, including the MyD88-dependent 

cascade, which is initiated by the intranuclear body  

and prolactin signaling pathway. To further demonstrate 

that JUN is associated with PD-1 signaling pathway 

activation (search in KEGG database), we extracted  

the RNA sequencing data of lung cancer patients  

with LUAD from the TCGA database to analyze the 

correlation between JUN and PD-1 blockade treatment 

response. We found that the correlation was not high in 

patients with poor PD-1 treatment response (R=0.034, 

P=0.46, Figure 4E), suggesting that it might be not 

associated with PD-1 blockade treatment effect in 

patients. In addition, a survival analysis suggested that 

patients with high JUN gene expression had a better 

clinical prognosis (Figure 5D). 

 

To further support this finding, we had tested and 

analyzed lung adenocarcinoma biopsy tissue samples 

using mixed tissue RNA sequencing and found that the 

JUN gene was statistically associated with successful 

PD-1 blockade therapy (Figure 5C). However, the 

relative expression of JUN in the good response to  

PD-1 blockade therapy group was higher than that of 

the poor response group. This contrary finding may be 

the result of using bulk-RNA sequencing of tumor 

tissue, as JUN is also differentially expressed on other 

cells. In addition, we performed an in-depth analysis of 

immune cell interactions and found that Treg cells may 

indirectly affect differential of CD8 sub-clusters and 

expression JUN gene through signaling pathways, such 

as PI3K-Akt, TGF-beta, and MAPK, phosphorylating 

AP1 protein and promoting immune cell proliferation 

(Figures 2A, 3D), differentiation, and immune response 

(search in KEGG database). Prior studies have also 

reported that activated c-JUN Cellular Jun (Cellular 

JUN) is highly expressed at the invasive front of  

breast tumors and is closely associated with tumor cell 

proliferation and angiogenesis [29]. Thus, c-JUN and 

JUNB (a subtype of JUN) play important roles in 

lymphoid-resident CD8α-related conventional dendritic 

cells 1 (cDC1, a subset of conventional dendritic  

cells), which could affect the diversity, function, and 

maintenance of cDC1 [30]. Therefore, targeting c-JUN/ 

AP-1 (activating protein-1) may provide new therapeutic 

approaches for blocking tumor angiogenesis. Finally, 

we found JUN to cause the activation or inhibition  

of the PD-1/PDL-1 signaling pathway indirectly, and 

maybe a potential response predictor for PD-1 blockade 

treatment. 

 
Although we analyzed the cellular and molecular 

mechanisms of PD-1 blockade combined with 

chemotherapy in LUAD patients using scRNAseq, this 

study has some limitations. For example, we used 

scRNAseq data shared by previous authors and TCGA 

database for bioinformatic experimental analysis. Wet 

experimental aspects were validated using bulk RNA 

sequencing of samples from clinically enrolled patients, 

and further in vivo and in vitro experimental evidences 

were lacking. The exact mechanism by which JUN is 

involved in regulating PD-1/PD-L1 signaling pathway 

activation, and how it affects targeted immunotherapy 

requires further investigation in animal model. 
 

Importantly, RO/E plot analysis and cellular interaction 

plots indicated that CD8 T cells and CD4 Treg cells 

were shown to be heterogeneous subtypes and have 

unique interactions in post-group compared to that of 

pre-group (Figure 3D). These findings indicate that the 

response to PD-1 blockade therapy may correlate with 

Treg cells and CD8 T cell subpopulations (Figures 2B, 

2C, 3C, 3D). The ratios of observed cell numbers to 

random expectations (Ro/e) method uses cell count and 

chi square test to calculate the expected and observed 

coefficients, which can effectively avoid errors caused 

by sequencing imbalance and observed on the change 

trend. All results in this article were based on limited 

single cell RNA sequencing data, which could result in 

bias and more single-cell data were needed to support 

the conclusion. The survival analysis of JUN was based 

on lung adenocarcinoma data from TCGA database, 

which may mix samples of different subtypes and had  

a certain impact on the results. For our internal IHC 

data, due to the small sample size, may also cause bias 

in the results. Furthermore, the role of JUN discovered 

in this study in lung adenocarcinoma still needs more 

experimental validation. 

 

In summary, the results from our study further our 

understanding of immune cell profiling before and 

during PD-1 blockade therapy and may provide a 

valuable predictor of PD-1 treatment response for future 

clinical research in pharmacogenomics. 

 

CONCLUSIONS 
 

We identified a new valuable gene, JUN, and described 

the unique pattern of cellular microenvironment that 

determines response to PD-1 blockade therapy on  

lung cancer patient. Furthermore, the expression level 

on CD8 lyphocytes sub-clusters of JUN may have 

predictive value in determining the response to PD-1 

blockade therapy. 

 

Abbreviations 
 

LUAD: Lung adenocarcinoma; LUSC: Lung squamous 

cell carcinoma; DEG: Differentially expressed gene; 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

 

Supplementary Table 1. Clinical characteristics of patients enrolled in this study. 

New name 
Primary 

sample name 

Patients 

ID 
Age Gender 

Tumor 

type 
Treatment Response Treatment Hx Biopsy site Timepoint 

A01_ut_meta P010.pre.01 P010 53 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment LN metastasis A01pre 

A02_ut_meta P019.pre.01 P019 73 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment LN metastasis A02pre 

A01_tr_meta P010.post.01 P010 53 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment LN metastasis A01post 

A02_tr_meta P019.post.01 P019 73 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment LN metastasis A02post 

B01_ut_meta P001.pre.01 P001 57 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment LN metastasis B01pre 

B02_ut_meta P013.pre.01 P013 61 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment 

Liver 

metastasis 
B02pre 

B02_tr_meta P001.post.03 P001 57 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
No On treatment 

Right lung 

tumour 
B02post 

B02_tr_meta P013.post.03 P013 61 Female LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
No On treatment LN metastasis B02post 

C01_ut_pri P029.pre.01 P029 52 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment 

Left lung 

tumour 
C01pre 

C02_ut_pri P030.pre.01 P030 65 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment 

Right lung 

tumour 
C02pre 

C03_ut_pri P033.pre.01 P033 48 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment 

Right lung 

tumour 
C03pre 

C04_ut_pri P035.pre.01 P035 71 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes Pre-treatment 

Right lung 

tumour 
C04pre 

C01_tr_pri P029.post.01 P029 52 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment 

Left lung 

tumour 
C01post 

C02_tr_pri P030.post.01 P030 65 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment 

Right lung 

tumour 
C02post 

C03_tr_pri P033.post.01 P033 48 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment 

Right lung 

tumour 
C03post 

C04_tr_pri P035.post.01 P035 71 Male LUAD 
Pembrolizumab + Carboplatin 

+ Pemetrexed 
Yes On treatment 

Right lung 

tumour 
C04post 

Clinical information from the original text, reorganize and number it. Among them, Pre treatment is defined as Pre for the 
untreated group, and On treatment is defined as Pos for the treatment group. 
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Supplementary Table 2. Bulk-RNAseq validation. 

Grouped Response Patient ID Hospital ID Gender Age 
Pathological type 

(before surgery) 
Biopsy 

Good Response MPR A618_139_T_MPR 161891 male 66 LUAD right lung 

Poor Response SD A618_111_TSD 160929 male 64 LUAD left lung 

Poor Response SD A618_114_TSD 156260 male 47 LUAD right lung 

Good Response pCR A618_88_T_pCR 157558 male 73 LUAD left lung 

Good Response MPR A618_59_T_MPR 155967 male 69 LUAD left lung 

Poor Response SD A618_101_TSD 152870 male 65 LUAD left lung 

Poor Response SD A618_128_TSD 157955 male 45 LUAD right lung 

Poor Response SD A618_91_TSD 158496 male 55 LUAD left lung 

Poor Response SD A618_106_TSD 157780 male 65 LUAD right lung 

Good Response MPR A618_62_T_MPR 157416 male 69 LUAD right lung 

Good Response pCR A618_71_T_pCR 154853 male 56 LUAD right lung 

Good Response pCR A618_96_T_pCR 158459 male 67 LUAD right lung 

Good Response pCR A618_103_T_pCR 159844 male 75 LUAD left lung 

Good Response MPR A618_136_T_MPR 157786 male 55 LUAD right lung 

Poor Response SD A618_47_TSD 152297 female 65 LUAD left lung 

Poor Response SD A618_125_TSD 156386 female 72 LUAD right lung 

Poor Response SD A618_44_TSD 152560 male 56 LUAD right lung 

Bulk RNA-seq data analysis, in which PCR (complete pathological response) and MPR (significant pathological response) are 
defined as good responses. SD (stable disease), PD (progressive disease) are defined as adverse reactions. 

  

Supplementary Table 3. IHC validation. 

Pathology number SEX Age Prognosis 

B2101862 female 55 PR 

B2108744 male 75 PR 

B2113067 male 76 SD 

B2100531 male 63 PR 

B2006179 male 66 PR 

B2001556 female 50 SD 

B2002417 male 53 invalid 

B2104352 male 71 PR 

B2202174 male 72 PR 

B2007434 male 72 PR 

B2004459 male 40 PR 

B2203394 male 74 PR 

B2215850 female 61 invalid 

B1810548 male 58 PR 

B2202570 male 65 PR 

B2206675 female 70 SD 

B2101407 male 57 PR 

B2106387 male 65 PR 

18 case slices from Tongren Hospital were subjected 
to IHC histochemical staining experiments, PR 
(pathological response). SD (stable disease), invalid 
(invalid group). 
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