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INTRODUCTION 
 
Given its elevated aggressiveness and unfavorable 

prognosis, pancreatic adenocarcinoma (PAAD) 

represents a substantial threat to human life and well-

being. Epidemiological studies show that pancreatic 

cancer is the fourth most lethal form of cancer, while 

being the 12th most frequent tumor worldwide [1, 2]. 

Pancreatic ductal adenocarcinoma (PDAC) comprises 
the majority of PAAD cases, displaying low 

responsiveness to radiotherapy, a challenging resection 

rate, and a notably poor prognosis, with a 5-year 
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ABSTRACT 
 

Purpose: Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The 
engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through 
their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in 
PAAD has not been explored. 
Methods: The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene 
Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome 
Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing 
via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene 
expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. 
Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-
related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, 
integrating clinicopathological traits and the risk signature, a nomogram model was constructed. 
Results: Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. 
Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a 
seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for 
PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, 
integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in 
prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and 
immune scores, as well as specific immune cell types. 
Conclusions: The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a 
thorough analysis of the PAAD CAF signature may aid in deciphering the patient’s immunotherapy response 
and presenting fresh cancer treatment options. 
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survival rate of less than 7% [1, 3]. The progression of 

PAAD from genetic mutation to abnormal cell 

proliferation and precancerous lesions, culminating in 

early carcinoma, spans an approximate duration of 5-20 

years. However, a PAAD tumor can rapidly progress 

from a tiny lump to an advanced stage in as little as 6 to 

20 months. Moreover, the asymptomatic progression  

of pancreatic tumors often leads to the diagnosis  

of pancreatic cancer at advanced stages in most 

individuals. Therefore, early identification and 

prediction of disease progression in PAAD are of 

significant clinical importance. 

 

Pancreatic cancer therapy and patient outcomes can be 

greatly improved by a deeper understanding of the 

pathogenesis and development of PAAD, as well as the 

identification of novel molecular targets for the disease. 

Rapid advances in omics technology over the past few 

decades have greatly aided our understanding of the 

molecular pathogenesis of PAAD [4, 5]. Akin to 

numerous malignancies, PAAD intricately engages 

multifaceted molecular cascades. Presently, researchers 

have adeptly fashioned a variety of intricate polygenic 

prognostic risk models leveraging advanced bio-

informatics methodologies. Gene signatures obtained 

from omic data have been developed to forecast PAAD 

clinical outcomes [6, 7]. A multigene prognostic model 

serves as a valuable tool for assessing patients’ overall 

survival duration and risk of recurrence. It enables the 

identification of high-risk individuals with a poor 

prognosis, facilitating timely and systematic inter-

vention. Conversely, it allows for the appropriate 

avoidance of unnecessary treatment burden among low-

risk patients. In light of this, unique multigene 

signatures are required for predicting PAAD outcomes 

and recurrence.  

 

Throughout the progression of cancer, the micro-

environment of PAAD cells is conducive to their 

survival, proliferation, and distant metastasis [8]. 

Research has underscored the fundamental importance 

of the ongoing interaction between cancer cells and 

stromal cells in the process of cancer development 

and progression [9]. Cancer-associated fibroblasts 

(CAFs) are comparatively prevalent stromal cell 

components that have been observed in a variety  

of malignancies, including breast cancer, prostate 

cancer, and hepatocellular carcinoma, and their 

communications with cancer cells have been shown to 

be essential for cancer development [10–12]. 

Noteworthy is the possibility that certain biological 

traits, including pronounced interstitial fibrosis, are 

linked to the poor prognosis of pancreatic cancer [13]. 

Tumor cell proliferation, metastasis, and chemo-

therapy resistance may all be influenced by CAFs due 

to the secretion of various growth factors, chemo-

kines, and cytokines, as well as the degradation of 

extracellular matrix proteins [14, 15]. The tumor-

promoting properties of CAFs might be maintained 

even in the absence of cancer cells [16]. 

Subsequently, blocking CAF-derived effects or 

inhibiting CAF-secreted components that promote 

tumor formation and progression has emerged as a 

viable method for PAAD treatments.  

 

Previous study has identified five new CAFs subclusters 

based on the marker genes with distinct signaling 

patterns and immune status in PAAD using single-cell 

sequence transcriptomic data [17]. However, there is 

still a lack of knowledge on how PAAD prognosis and 

immunotherapy response are connected to the features 

of CAF on a systemic level. Transcriptomic and single-

cell RNA-sequencing (scRNA-seq) data pertaining to 

PAAD were obtained from the GEO and TCGA 

databases. We classified CAFs into distinct subclusters 

and established a CAF-based risk signature for PAAD. 

To enhance the clinical applicability of CAF 

characteristics in predicting PAAD, we devised a 

distinctive nomogram that integrates the CAF-based 

risk signature alongside clinicopathological variables. 

Finally, the immunological landscape and response to 

immunotherapy that underlie the CAF-based signature 

were further explored, and the clinical significance was 

established. Our findings could offer fresh perspectives 

on the pathogenesis of PAAD, paving the way for more 

individualized therapies and better results for PAAD 

patients. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

We obtained scRNA-seq data (GSE155698) from the 

Gene Expression Omnibus (GEO) database, 

encompassing pancreatic cancer tumor samples from 16 

patients alongside 3 adjacent normal pancreas samples. 

Scanning the scRNA-seq data involved an initial 

screening of single cells, ensuring each gene was 

expressed in at least three cells, while maintaining a 

minimum threshold of 250 expressed genes per cell. To 

determine the relative abundance of mitochondria and 

rRNA, the Seurat R package was employed [18]. Each 

single cell was then configured to express at least 6000 

genes and have a UMI greater than 100 for further 

screening. After everything was filtered out, 50,527 

cells were left. Utilizing The Cancer Genome Atlas 

(TCGA) database, we accessed transcriptome data, 

single-nucleotide variant (SNV) data, copy number 

variant (CNV) data, and associated clinical information 

for PAAD. Additionally, expression matrices from 

GSE78229 and GSE85916 were acquired from the GEO 

database for validation purposes. 
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Clustering of CAFs 

 

In an effort to better describe the CAF signature, we 

redeployed the scRNA-seq data of PAAD. After log 

normalization, cells that had either over 6000 or under 

250 genes being actively expressed were filtered out. 

We addressed batch effects and conducted non-linear 

dimensional reduction. Using the FindNeighbors and 

FindClusters functions, individual cells were partitioned 

into separate subgroups. Subsequently, this subdivision 

was visualized via t-distributed stochastic neighbor 

embedding (t-SNE) dimensional reduction. Six genes 

were used to annotate fibroblasts, including ACTA2, 

FAP, PDGFRB, NOTCH3, DCN, and COL1A2. Using 

the same approach, FindNeighbors and FindClusters 

were used to re-cluster the fibroblasts, which was 

visualized with the TSNE dimensionality reduction. We 

utilized the FindAllMarkers function to identify specific 

marker genes within each CAF cluster. Subsequently, 

functional enrichments were conducted on these CAF 

marker genes using the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analysis via the clusterProfiler 

package [19]. The CopyKAT R package was used to 

distinguish tumor cells from normal cells by analyzing 

CNV features among CAFs clusters [20]. 

 

Identification of prognostic genes 

 

Differentially expressed genes (DEGs) between 177 

pancreatic tumor samples and 4 normal tissue samples 

were first identified in the TCGA-PAAD cohort. We 

then analyzed the DEGs for CAF clusters to determine 

which genes are most strongly correlated with CAFs (P 

< 0.001, cor > 0.4). Further prognosis-associated genes 

were identified through univariate Cox regression 

analysis, considering a significance threshold of P < 

0.05. To reduce the pool of prognostic genes, initial 

analysis involved least absolute shrinkage and selection 

operator (LASSO) Cox regression, yielding seven 

genes. Subsequently, a multivariate Cox regression 

employing stepwise regression constructed the risk 

signature, calculating coefficients via the formula: risk 

score = Σβi*Expi. Patients were stratified into high- or 

low-risk groups based on their risk scores. An 

evaluation of the risk signature’s predictive per-

formance was conducted using receiver operating 

characteristic (ROC) analysis. Analyses in the 

validation cohorts were carried out in a similar manner. 

 

Nomogram construction 

 

To create a clinically applicable nomogram model, we 

initiated univariate and multivariate Cox regression 
analyses incorporating the risk signature and 

clinicopathological factors such as age, gender, stage, 

and race. The resulting multivariate Cox model, 

including variables with P < 0.05, was utilized to devise 

a prognostic nomogram for PAAD using the rms 

package [21]. The prediction efficacy of the model was 

assessed by the calibration curve and the reliability was 

assessed using decision curve analysis (DCA). 

 

Immune infiltration analysis 

 

The immune and stromal scores of the tumor 

microenvironment (TME) were calculated using the 

ESTIMATE algorithm and the relative abundance of 

infiltrating immune cells in the TME was evaluated by 

the CIBERSORT and MCPcounter algorithms [22]. 

 

Evaluation of responses to immunotherapy 

 

We collected clinical and transcriptomic data of PAAD 

patients treated with anti-PD-L1 therapies from the 

IMvigor210 cohort available at http://research-

pub.gene.com/IMvigor210CoreBiologies. Furthermore, 

GSE78220 comprises pre-treatment melanoma samples 

that underwent anti-PD-1 checkpoint blockade (ICB) 

immunotherapy. This transcriptomic dataset can be 

accessed to assess the potential utility of the risk 

signature in predicting response to ICB therapy [23]. 

 

Statistical analysis 

 

R software (version 3.6.3) was used for all statistical 

testing. The Pearson or Spearman correlation method 

was used for correlation analysis. The Wilcoxon test 

was used to examine the differences between the two 

groups. K-M curves with Log-rank testing were used to 

compare survival times across groups. Statistical 

significance was assumed at a P-value of less than 0.05. 

 

Data availability statement 

 

Publicly available datasets were analyzed in this study. 

The data can be found in GEO and TCGA databases. 

 

RESULTS 
 

Identification of four CAF-related clusters for 

PAAD 

 

The single-cell RNA-seq dataset GSE155698 was 

employed to identify the CAF subpopulations in 

PAAD, which included 17 PAAD tumor samples from 

16 patients (Patient 11 had samples A and B) and 3 

adjacent normal pancreas samples. Following 

preliminary screening, a total of 50,527 cells were 

collected (Supplementary Figure 1A, 1B). Sup-

plementary Figure 1C displayed the comprehensive 

outcomes of the data preprocessing, which 

demonstrated a high quality control for the subsequent 
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analysis. The UMAP plot displayed the distributions of 

the 20 samples after removal of the batch effect 

(Supplementary Figure 1D). After log-normalization 

and reducing dimensions, a total of 31 distinct 

subpopulations were identifiable (Supplementary 

Figure 1E). Of note, six CAF marker genes, including 

ACTA2, FAP, PDGFRB, NOTCH3, DCN, and 

COL1A2, were observed to be highly expressed in  

the subpopulation 10 and 17, which were therefore 

considered as CAF populations (Supplementary Figure 

1F).  

 

Four CAF clusters were then identified after extracting 

cells from the two CAF populations (subpopulation 10 

and 17) using the same clustering approach for 

dimensionality reduction (Figure 1A). The varying 

expression of the six CAF marker genes within the four 

CAF clusters suggests distinct marker gene expressions 

among different subpopulations (Figure 1B). A total of 

860 DEGs were recognized within the four CAF clusters, 

and Figure 1C illustrates the expression patterns of the top 

5 DEGs within these clusters, serving as the designated 

marker genes. The proportions of the four clusters in each 

sample were shown in Figure 1D. As determined by CNV 

characteristics, the four CAF clusters contained 1415 

normal cells and 537 tumor cells (Figure 1E). 

Furthermore, KEGG enrichment analysis showed that 

DEGs were enriched in multiple pathways across the four 

clusters, including vascular smooth muscle contraction, 

focal adhesion, dilated cardiomyopathy, hypertrophic 

cardiomyopathy, ECM-receptor interaction, and Protein 

digestion and absorption (Figure 1F).  

 

Expression of distinct signaling patterns in CAF 

clusters 

 

To investigate the potential role of CAF clusters in 

tumorigenesis, the expression of ten tumor-related 

pathways were evaluated in the four CAF clusters, 

including WNT, NRF1, MYC, CellCycle, PI3K, 

HIPPO, NOTCH, RAS, TGF-Beta, and TP53 

signaling pathways. The GSVA scores of these 

pathways across the four CAF clusters were presented 

in the heatmap (Figure 2A). CAF_2 cluster exhibited 

notably higher proportions of malignant cells 

compared to the other three clusters (Figure 2B). 

Moreover, the CAF_4 cluster displayed a higher 

proportion of malignant cells compared to both 

CAF_1 and CAF_3 clusters. Furthermore, we 

conducted a comparison of GSVA scores for ten 

tumor-related pathways between malignant and non-

malignant cells within each CAF cluster (Figure 2C–

2F). Non-malignant cells had considerably higher 
GSVA scores for most signaling pathways in all CAF 

clusters, while minor variations among groups were 

observed. 

Associations between CAF clusters and clinical 

characteristics of PAAD patients 

 

To investigate potential associations between CAF 

clusters and clinical characteristics of PAAD patients, 

the ssGSEA scores for specific marker genes—

C10orf10, COL14A1, COL4A2, COL4A1, and 

ANGPT2 for CAF_1; SFRP2, LUM, MMP11, 

CTHRC1, and COL1A1 for CAF_2; RASD1, MT1A, 

MT1M, JUNB, and RERGL for CAF_3; and LTB, 

CCL4, IL7R, CCL5, and CD52 for CAF_4 (as 

identified in Figure 1C)—were calculated within each 

CAF cluster based on the TCGA cohort. Supplementary 

Figure 2A demonstrated that the CAF_4 cluster 

displayed notably lower scores in tumor samples in 

comparison to normal samples, with no statistically 

significant differences observed in the remaining CAF 

clusters. Following this, to assess the prognostic 

significance, the PAAD samples within the TCGA 

cohort were stratified based on high and low CAF 

scores. There was no correlation between CAF_1 and 

CAF_3 clusters and PAAD prognosis, while the CAF_2 

and CAF_4 clusters fared better for low-CAF score 

samples than high-CAF score samples. (Supplementary 

Figure 2B). Next, we set out to establish the clinical 

correlations of CAF clusters. When PAAD patients 

were segmented into two categories based on gender 

(female vs. male), the disparity of CAF_1 score, but not 

other CAF clusters, was observed (Supplementary 

Figure 2C–2F). However, no clinical associations 

between CAF clusters and age were discovered. 

Furthermore, CAF_3 and CAF_4 scores were shown to 

be considerably higher in white persons compared to 

Asian people, whereas no associations were found 

between CAF scores and pathological stages.  

 

Construction of CAF-related risk signature 

 

We initiated the identification of DEGs by comparing 

177 tumor samples with 4 normal samples in the 

TCGA-PAAD cohort to establish a risk signature. As 

depicted in Figure 3A, a total of 207 DEGs were 

discerned, comprising 47 up-regulated and 160 down-

regulated genes. Among these, 148 genes displayed 

significant associations with CAF clusters. 

Subsequently, univariate Cox regression analysis was 

conducted on these 148 genes to assess their prognostic 

significance. Out of these, 14 genes exhibited 

prognostic values; 5 genes were identified as risk-

associated, while 9 genes were deemed protective 

(Figure 3B). Functional annotations for the 148 genes 

were presented in Figure 3C. The significantly enriched 

biological process terms were immune response-
regulating signaling pathway, leukocyte mediated 

immunity, regulation of immune effector process, cell 

activation involved in immune response, and leukocyte 
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activation involved in immune response. In the cellular 

component part, genes were particularly enriched in 

external side of plasma membrane, secretory granule 

membrane, endocytic vesicle, plasma membrane 

signaling receptor complex, and tertiary granule. 

Meanwhile, immune receptor activity, phosphati-

dylinositol binding, MHC class I receptor activity, 

MHC protein binding, and inhibitory MHC class I 

receptor activity were mainly enriched in the molecular 

function group. In addition, integrated DEGs were 

mainly involved in Chemokine signaling pathway, 

Osteoclast differentiation, B cell receptor signaling 

 

 

 

Figure 1. Profiling of CAF subpopulations. (A) UMAP plot displaying the distribution of four distinct CAF subpopulations post-clustering. 

(B) UMAP plot illustrating the expression of CAF marker genes (ACTA2, FAP, PDGFRB, NOTCH3, DCN, and COL1A2). (C) Dot plot showcasing 
the top 5 marker gene expressions across the four CAF clusters. (D) Relative proportions and cell numbers within each sample for the four 
CAF clusters. (E) UMAP plot delineating the distribution between malignant and non-malignant cells. (F) KEGG enrichment analysis of DEGs 
observed across the four CAF clusters. 
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pathway, Cytokine-cytokine receptor interaction, and 

Neutrophil extracellular trap formation in KEGG 

pathway analysis. Subsequently, we utilized LASSO 

regression analysis to further screen 14 prognostic 

genes and finally obtained seven genes as lambda = 

0.0335 in the model, including Toll-Like Receptor 1 

(TLR1), Serpin Family B Member 5 (SERPINB5), 

Phospholipase D Family Member 4 (PLD4), CD36 

Molecule (CD36), Phosphocholine Phosphatase 1 

(PHOSPHO1), BCL11 Transcription Factor A 

(BCL11A), Ring Finger Protein 166 (RNF166)  

(Figure 3D, 3E). We utilized multivariate Cox 

regression analysis employing a stepwise regression 

method to establish the risk signature. The resulting 

final seven-gene signature formula is represented as 

follows: RiskScore = -0.129 * CD36 - 0.202 * 

PHOSPHO1 - 0.211 * PLD4 + 0.58 * TLR1 + 0.183 * 

SERPINB5 - 0.36 * BCL11A - 0.272 * RNF166 (Figure 

3F). Following z-mean normalization, the risk score 

was computed for each sample and categorized into 

high- and low-risk groups. Kaplan-Meier survival 

analysis conducted on the TCGA cohort revealed 

 

 
 

Figure 2. Tumor-related pathway characteristics in CAF clusters. (A) Heatmap illustrating GSVA scores for ten tumor-related 

pathways enriched in both malignant and non-malignant CAF cells. (B) Comparison of malignant and non-malignant cell proportions across 
different CAF clusters. Comparative analysis of GSVA scores for ten tumor-related pathways between malignant and non-malignant cells 
within (C) CAF_1, (D) CAF_2, (E) CAF_3, and (F) CAF_4 clusters. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not statistically significant. 
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Figure 3. Identification of CAF-associated hub genes with prognostic significance. (A) Volcano plot illustrating DEGs between tumor 

and normal tissues in the TCGA-PAAD cohort. (B) Volcano plot showcasing prognosis-related genes identified through univariate Cox 
regression analysis. (C) Functional enrichment analyses encompassing GO (BP, CC, and MF) and KEGG analyses of CAF-related DEGs. (D) 
Trajectory plot depicting each independent variable with lambda in the LASSO model for PAAD. (E) LASSO coefficient profiles highlighting the 
seven genes in PAAD. The plot shows coefficient profiles against the log (lambda) sequence. (F) Multivariate Cox coefficients for each gene in 
the risk signature. (G) Kaplan-Meier curves illustrating the risk model constructed using the seven genes in the TCGA-PAAD cohort. (H) ROC 
curves displaying the risk model constructed with the seven genes in the TCGA-PAAD cohort. Kaplan-Meier curves of the risk model 
constructed with the seven genes in the validation datasets (I) GSE78229 and (J) GSE85916.  
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notably poorer survival outcomes among individuals in 

the high-risk category compared to those in the low-risk 

group (Figure 3G). In the TCGA cohort, the model 

displayed varying 1- to 5-year AUC values ranging 

from 0.680 to 0.857 (Figure 3H). Figure 3I, 3J 

displayed the survival curves for validation datasets 

GSE78229 and GSE85916. The findings indicate 

notably poorer prognosis among patients in the high-

risk group.  

 

Development of nomogram based on CAF-related 

gene signature in PAAD patients 

 

Utilizing both univariate and multivariate Cox 

regression analyses, we amalgamated clinicopatho-

logical characteristics to enhance the predictive 

capability of the CAF-related gene signature. In the 

initial phase of our investigation, a univariate analysis 

highlighted age [hazard ratio (HR) = 1.028, 95% 

confidence interval (CI): 1.007 – 1.049, P = 0.009] and 

risk score (HR = 2.718, 95% CI: 1.973 – 3.746, P < 

0.001) as notably linked to PAAD patient survival 

(Figure 4A). Subsequent multivariate Cox regression 

analysis confirmed the risk score (HR = 2.683, 95% CI: 

1.935 – 3.722, P < 0.001) as an independent prognostic 

indicator for PAAD, considering other influencing 

factors (Figure 4B). Consequently, we developed a 

visual nomogram incorporating age and risk score to 

predict individual survival at 1, 2, and 3 years, 

depicted in Figure 4C. The calibration curve illustrated 

satisfactory alignment between actual observations  

and predictions across 1-, 2-, and 3-year intervals 

(Figure 4D). Demonstrating superior discriminative 

performance for identifying high-risk patients, the DCA 

plot highlighted the nomogram’s superiority over age 

(Figure 4E). TimeROC analysis of the TCGA cohort 

exhibited higher AUC values for the risk score and 

nomogram compared to other indicators (Figure 4F).  

 

Mutation and pathway analyses of seven prognostic 

genes 

 

The genetic mutations (SNV) within the seven genes 

forming the risk signature were subsequently examined.

 

 
 

Figure 4. Creation of a nomogram using CAF-related gene signature for PAAD prognostication. (A) Univariate and  

(B) multivariate Cox regression analyses involving risk score and clinicopathological characteristics. (C) Development of a nomogram model 
amalgamating age and risk score. (D) Calibration plots showcasing the prediction accuracy for 1-, 2-, and 3-year survival probabilities.  
(E) Decision curve analysis illustrating the nomogram’s utility. (F) Time-ROC curve analysis comparing the predictive performance of the 
nomogram against other factors. 

12532



www.aging-us.com 9 AGING 

More samples were found to contain SNV mutations in 

TLR1, BCL11A, PHOSPHO1, and SERPINB5, 

however, no SNV mutation was found in CD36, PLD4, 

or RNF166 (Figure 5A). Pathway enrichment on SNV 

data showed that TGF-Beta and NRF2 pathways were 

the most affected pathways in PAAD, while more 

samples were involved in the RTK-RAS and TP53 

pathways (Figure 5B). Within the seven genes 

comprising the risk signature, only a few samples 

displayed CNV alterations (Figure 5C). Hence, we 

explored the connections between these risk genes and 

diverse molecular indicators in PAAD, aiming to 

enhance our understanding of how these genes are 

linked to the disease. The results demonstrated that 

CD36, PHOSPHO1, PLD4, TLR1, BCL11A, and 

RNF166 were all significantly negatively correlated 

with Aneuploidy Score, Fraction Altered, and Number 

of Segments, whereas SERPINB5 exhibited notably 

positive correlations with Homologous Recombination 

Defects and Number of Segments (Figure 5D). 

Interestingly, the Nonsilent Mutation Rate displayed no 

correlation with any of these identified risk genes. 

Additionally, we delved into the potential pathways 

linked to each risk gene (Figure 5E, 5F). The heatmap 

revealed significant correlations of these seven genes 

with a total of 60 pathways, encompassing pathways 

like adipocytokine signaling pathway, base excision 

repair, and cell adhesion molecules cams. 

 

Relationship between immune infiltration and seven 

prognostic genes 

 

We then investigated the association between the seven 

prognostic genes and immune infiltration. Initially, we 

computed the immune score, stromal score, and 

ESTIMATE score utilizing the ESTIMATE algorithm 

(Supplementary Figure 3A–3D). Our correlation 

analysis revealed that CD36, PHOSPHO1, PLD4, 

TLR1, and RNF166 exhibited positive correlations with 

stromal score, immune score, and ESTIMATE score. 

Conversely, BCL11A showed positive correlations 

solely with immune score and ESTIMATE score. 

Notably, SERPINB5 did not display significant 

correlations with any of these three scores. We then 

compared the immune score across groups that were 

defined by the median expression level of respective 

genes. For the genes CD36, PHOSPHO1, PLD4, TLR1, 

BCL11A, and RNF166, individuals with high 

expression had significantly higher immune score than 

those with low expression (Supplementary Figure 3E–

3K). However, individuals with low SERPINB5 

expression had higher immune score. We utilized the 

CIBERSORT algorithm to compute the abundance of 
infiltrating immune cells and their correlations with the 

seven prognostic genes. The correlation heatmap 

showed that CD36, PHOSPHO1, PLD4, BCL11A, and 

RNF166 presented a significantly positive correlation 

with CD8+ T cells, naïve and memory B cells, whereas 

negative correlation with CD4+ memory resting T cells. 

TLR1 was positively correlated with CD4+ memory 

activated T cells, while negatively correlated with 

activated NK cells and activated mast cells, similar to 

SERPINB5 (Supplementary Figure 3L). We further 

validated our results using the MCPcounter algorithm. 

Significantly positive correlations were observed 

between RNF166, TLR1, PLD4, PHOSPHO1, CD36, 

and infiltrating immune cells, while SERPINB5  

was only positively correlated with fibroblasts, which 

was consistent with previous results (Supplementary 

Figure 3M).  

 

The prediction of risk signature to the efficacy of 

immunotherapy 
 

The utilization of T-cell immunotherapy in cancer 

treatment has shown promise in extending patients’ 

survival. Consequently, we conducted an analysis on 

the IMvigor210 and GSE78220 cohorts to evaluate the 

predictive efficacy of the risk signature for immune-

checkpoint therapy. Patients categorized in the 

IMvigor210 low-risk group exhibited better clinical 

outcomes and longer overall survival in comparison to 

those in the high-risk group (Figure 6A, P = 0.0049). 

However, no significant difference in risk score was 

observed between patients with complete/partial 

response (CR/PR) and those with progressive/stable 

disease (PD/SD), and the proportion of PD/SD patients 

in the high-risk group did not significantly differ from 

that in the low-risk group (Figure 6B, 6C). Particularly, 

substantial differences in survival probability were 

noted among various risk groups for patients diagnosed 

at Stages I and II (Figure 6D, P = 0.013), but not for 

those at Stages III and IV (Figure 6E, P = 0.19). These 

findings suggested higher sensitivity of the risk score 

for patients diagnosed at earlier stages. Similarly, 

patients within the low-risk group in the GSE78220 

cohort displayed significantly prolonged overall 

survival compared to those in the high-risk group 

(Figure 6F, P = 0.033). Moreover, in contrast to 

IMvigor210, PD patients exhibited notably higher risk 

scores than PR/CR patients (Figure 6G), and the 

proportion of PD patients in the high-risk group was 

significantly elevated compared to the low-risk group in 

the GSE78220 cohort (Figure 6H). These outcomes 

indicate the effective predictive capacity of the risk 

signature in determining patient responses to 

immunotherapy.  

 

DISCUSSION 
 

Since CAFs have been proved to be engaged in 

carcinogenesis by releasing numerous substances into 
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Figure 5. Genetic profile of the seven genes in the risk signature. (A) Waterfall diagram illustrating SNV mutations of the seven 
pivotal genes. (B) Enrichment heatmap displaying key pathways associated with SNV data in PAAD. (C) CNV alterations in the seven crucial 
genes, showcasing instances of gain, loss, and absence of alterations. (D) Heatmap visualizing correlations between the seven pivotal genes 
and Aneuploidy Score, Homologous Recombination Defects, Fraction Altered, Number of Segments, and Nonsilent Mutation Rate. (E) 
Heatmap revealing gene-pathway correlations. (F) Heatmap illustrating enrichment scores for pathways. *P < 0.05, **P < 0.01, ***P < 0.001. 
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the TME, increasing evidence has shown that this 

dynamic interaction between tumor cells and stroma 

cells leads to tumor development [9, 24]. Here, using 

scRNA-seq data, we systematically characterized and 

classified CAFs of PAAD to better understand their 

variety. At the conclusion of the study, we identified 

four distinct clusters of CAFs, each exhibiting unique 

characteristics potentially influencing the biological 

regulation of the TME. Currently, there remains a 

scarcity of studies focusing on the predictive relevance 

of CAF-secreted factors or a CAF-associated risk 

signature in PAAD. Zhao et al. identified five novel 

subcluster of CAFs based on the marker genes and both 

CAF-C2 and CAF-C4 subgroups had significantly 

negative correlation with prognosis [17]. Inconsistently, 

our study identified four subgroups in PAAD using 

single-cell sequencing dataset, while both CAF_2 and 

CAF_4 subgroups showed poor prognosis, which were 

established by tallying up DEGs from the four groups 

into a single score. The distinct prognostic significance 

of CAF clusters might be attributed in part to the 

notable variation we observed in the TP53 signaling 

pathway between malignant and non-malignant cells 

within CAF_2 and CAF_4 subgroups, while such 

variation wasn’t evident in CAF_1 and CAF_3. Earlier 

research has indicated the involvement of TP53 

mutation in the progression of PAAD tumors [25, 26]. 

 

The predictive efficacy of two CAF subgroups led us to 

develop a CAF-based risk signature consisting of seven 

genes. CD36, PHOSPHO1, PLD4, BCL11A, and 

RNF166 were the protective genes, while TLR1 and 

SERPINB5 were the risk genes. Notably, TLR1, 

BCL11A, PHOSPHO1, and SERPINB5 were all found 

to have SNV mutations in our research. Overall patient 

survival is correlated with the presence of a sense SNV 

mutation, which alters protein activity or function that 

leads to PAAD progression [27]. Despite the lack of 

evidence from independent research, our findings imply 

a possible role for SNV mutations in these risk genes in

 

 
 

Figure 6. Risk signature response to immunotherapy in IMvigor210 and GSE78220 cohorts. (A) Prognostic differences among 
IMvigor210 cohort subgroups based on the risk score. (B) Variations in risk scores within IMvigor210 cohort responses to immunotherapy.  
(C) Distribution of immunotherapy responses among risk score groups in the IMvigor210 cohort. (D) Prognostic differences among subgroups 
of early-stage patients in the IMvigor210 cohort based on the risk score. (E) Prognostic differences among subgroups of advanced-stage 
patients in the IMvigor210 cohort based on the risk score. (F) Prognostic differences among subgroups of the GSE78220 cohort based on the 
risk score. (G) Variations in risk scores among GSE78220 cohort responses to immunotherapy. (H) Distribution of immunotherapy responses 
among risk score groups in the GSE78220 cohort. 
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PAAD development. Additionally, we discovered a 

strong association between the seven genes and 60 

pathways, some of which have previously been linked 

to carcinogenesis, including apoptosis [28], cytokine-

cytokine receptor interaction [29], leukocyte 

transendothelial migration [30], and natural killer cell 

mediated cytotoxicity [31]. Therefore, these findings 

point us in the right path for future research into how 

the control of these risk genes manifests in PAAD. 

 

Recent research indicates that tumor growth may be 

facilitated by CAFs’ interactions with the infiltrating 

immune cells in the TME [32]. In our investigation, we 

employed three distinct algorithms to assess the 

connections between seven prognostic genes and 

immune infiltration. The ESTIMATE analysis indicated 

significant positive correlations between four protective 

genes and one risk gene with stromal score, immune 

score, and ESTIMATE score. These results suggested a 

possible interaction between these genes and tumor 

immune microenvironment in PAAD and, by extension, 

that these genes could be valuable therapeutic targets 

for the disease. The tumor immune microenvironment 

encompasses diverse immune cells within tumor islets, 

collectively orchestrating the stage for an effective 

anticancer immune response in the TME. Tumor cells 

are able to escape immune cell surveillance when CAFs 

collaborate with these cells to create an immuno-

suppressive tumor microenvironment [33]. After 

calculating the immune cell abundance with 

CIBERSORT algorithm, multiple immune cells were 

found to correlate with the predictive genes, including 

naïve and memory B cells, CD8+ and CD4+ naïve T 

cells, and activated NK cells, which was consistent with 

the results of MCPcounter analysis. Compared to 

tumors without tertiary lymphoid structures (TLSs), 

PDAC tumors have an increased number of memory B 

cells [34]. Comparing TLSs from the TME to peripheral 

blood, there was a decrease in the number of IgD+ and 

IgM+/IgD+ naïve B cells, indicating that class switching 

occurred in the TME [35]. T cells play a role in tumor 

development, and therapies derived from T cells, like 

checkpoint blockade and chimeric antigen receptor T 

(CAR-T) cell therapy, have exhibited promising 

outcomes [36]. When a NK cell detects surface markers 

associated with oncogenic transformation, it may 

quickly and efficiently eliminate any number of 

neighboring cells. This unusual ability of NK cells can 

be used to stimulate both antibody and T cell responses, 

thus strengthening the case for their use as anticancer 

agents [37]. 

 

The majority of patients, however, exhibit either 
inherent or acquired resistance to immunotherapies [38]. 

According to our findings, the risk signature could 

identify individuals who were more likely to respond 

favorably to immunotherapies. Recent research has 

shown that mesothelial cell-derived CAFs can function 

as antigen-presenting cells by directly ligating and 

inducing antigen-specific regulatory T cells from naïve 

CD4+ T cells [39]. Therefore, CAFs might play a role  

in immune evasion within pancreatic cancer, offering 

insights into enhancing cancer immunotherapy 

strategies. Additionally, there was an observed positive 

correlation of M1 macrophages with the risk genes 

(TLR1 and SERPINB5), whereas M2 macrophages 

exhibited a positive correlation with the protective gene 

(BCL11A), hinting at a potential involvement of the risk 

genes in macrophage polarization. Studies revealed that 

LRRC15+ CAFs directly diminish CD8+ T cell activity 

and limit the response to checkpoint blockade through a 

TGFβ-dependent pathway [40]. Enhancements in patient 

survival and the response to immunotherapy could 

potentially result from the advancement of treatments 

aimed at re-establishing the balanced fibroblast state, 

thereby reducing the population of disease-promoting 

LRRC15+ myofibroblasts. Our results, on the other hand, 

suggested that a CAF-based signature might forecast a 

patient’s receptivity to anti-PD-L1 immunotherapy. 

These findings revealed previously unknown 

information on CAF’s function in modifying the TME 

and cancer niche. However, additional research is still 

needed to fully understand CAF-TIME communication’s 

function in PAAD. 

 

Our study has a few limitations. Firstly, the 

development of CAF clustering and the CAF-based risk 

signature relied on retrospective data from open 

resources. It’s crucial to validate its effectiveness in 

other prospective and multi-center PAAD cohorts in the 

near future. Secondly, our focus was primarily on the 

potential predictive value of the CAF-based risk 

signature. Further research is necessary to unravel the 

mechanisms underlying the signature’s involvement in 

the progression of PAAD. 

 

CONCLUSIONS 
 

In summary, our study provided a comprehensive 

characterization of PAAD CAF populations, identifying 

four distinct CAF subgroups exhibiting varied traits. 

The DEGs among these groups were found to be 

enriched in pathways like vascular smooth muscle 

contraction, focal adhesion, ECM-receptor interaction, 

and protein digestion and absorption. Leveraging two 

clusters significantly associated with PAAD prognosis, 

we formulated a CAF-based predictive risk signature 

composed of seven genes. This signature, when 

combined with clinicopathological parameters in a 

nomogram, demonstrated excellent prognostic 

performance for PAAD patient outcomes. Moreover, 

our findings suggested that this signature correlated 
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with the immune landscape of PAAD, potentially 

serving as a tool to predict responses to PD-L1 blockade 

immunotherapy. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Characterization of CAF populations utilizing scRNA-seq data from PAAD patients. (A) Total cell counts 

before filtering and (B) after filtering of single-cell data. (C) The quality control of scRNA-seq data of PAAD in individual samples before data 
filtering, including mRNA, UMI, mitochondrial content, hemoglobin content, and ribosome RNA content. (D) UMAP plot illustrating the 
distribution of 20 samples. (E) UMAP plot showcasing the distribution of subpopulations post-clustering of all cells. (F) UMAP plot displaying 
the expression of CAF marker genes (ACTA2, FAP, PDGFRB, NOTCH3, DCN, and COL1A2). 
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Supplementary Figure 2. Relationships between the four CAF clusters and PAAD patient prognosis. (A) Comparative analysis of 

four CAF scores within tumor and normal samples. (B) Kaplan-Meier curves depicting high and low CAF score groups across the four CAF 
clusters. Associations between (C) CAF_1, (D) CAF_2, (E) CAF_3, (F) CAF_4 clusters, and clinicopathologic factors, encompassing age, gender, 
race, and pathological stages. 
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Supplementary Figure 3. Relationship between immune landscape and seven prognostic genes. Scatter plots depicting the 

correlation between the seven prognostic genes and (A) immune score, (B) stromal score, and (C) ESTIMATE score. (D) Heatmap displaying 
the correlation between the seven prognostic genes and stromal score, immune score, and ESTIMATE score. Comparison between high and 
low expression of (E) CD36, (F) PHOSPHO1, (G) PLD4, (H) TLR1, (I) SERPINB5, (J) BCL11A, (K) RNF166, and immune score (wilcox.test).  
(L) Correlation between pivotal prognostic genes and infiltrating immune cells computed via the CIBERSORT algorithm. (M) Correlation 
between key prognostic genes and infiltrating immune cells calculated using the MCPcounter algorithm. 

 

 

12542


