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INTRODUCTION 
 

Alzheimer’s syndrome (AD) is a slow-onset and 

progressive brain disease. Over time, the disease 

progresses to severe memory problems, eventually 

causing patients to lose the ability to perform daily 

tasks [1]. AD is also one of the most common  

age-related neurodegenerative diseases, affecting 

approximately 6.5 million people aged 65 and older in 

the U.S. [2]. AD is, therefore, a significant challenge 

for global healthcare. However, the mechanisms 

underlying the relationship between AD and aging are 

unclear. 
 

Telomeres are known as the “mitotic clock” of  
cell life, and their length reflects the replication 

history and potential of cells [3]. As we age and the 

number of cell divisions increases, some of the genes 

that make up telomeres fail to replicate fully due to 

multiple cell divisions, and the cell terminates its 

function and no longer divides [4]. Thus, severely 

shortened telomeres indicate cellular aging [5]. 

Leukocyte telomere length (LTL) is a widely  

used biomarker, and in general, leukocyte telomere 

length reflects the state of senescence of the body’s 

immune cell-associated circulating cells [6]. It  

is unclear whether LTL is a risk factor for AD 

development. 

 

Competitive endogenous RNA (ceRNA) networks, in 

which long non-coding RNAs (lncRNAs) function  

as endogenous ceRNAs to sequester microRNAs 

(miRNAs) and thereby enhance the expression of 
messenger RNAs (mRNAs), have been increasingly 

recognized for their significant contributions to  

the pathogenesis of Alzheimer’s disease (AD) and 
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ABSTRACT 
 

Alzheimer’s Syndrome (AD) is a neurodegenerative disease that is prevalent in middle-aged and elderly people. 
As the disease progresses, patients gradually lose the ability to take care of themselves, which brings a heavy 
burden to the family. There is a link between leukocyte telomere length (LTL) and cognitive ability. To search 
for possible pathogenic mechanisms and potential therapeutic agents, we demonstrated a causal link between 
LTL and AD using Mendelian randomization analysis (MR). The expression of the target gene NBR2 and the 
downstream mRNA GJA1 and GJA1-related genes, pathway enrichment, and association with immune cells 
were further explored. Using the gene cluster-drug target interaction network, we obtained potential 
therapeutic drugs. Our study provides evidence for a causal link between AD and LTL, suggesting medicines that 
may treat and alleviate AD symptoms. 
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immune-inflammatory responses [7–9]. Among them, 

mir-19, a downstream miRNA of the LTL-associated 

lncRNA NBR2 [10], is mainly enriched in neural 

progenitor cells (NPCs) in hippocampal tissues, and 

its expression is down-regulated during neuronal 

development, particularly affecting neuronal cell 

migration [11]. mir-19-3p, the mature body of  

mir-19 [12], has been shown to alleviate amyloid  

β-induced nerve injury and thereby slow down the 

developmental process of AD [13]. 

 

Using two-sample Mendelian analyses, our study first 

explored the causal link between LTL and AD. We 

obtained the downstream miRNAs by intersecting the 

high lncRNA expression in various brain tissues and 

using TargetScan, followed by protein and gene level 

screening of NBR2-related genes to get GJA1. We 

further explored the function of GJA1 and its related 

genes. Finally, a novel drug-target interaction network 

framework was used to screen potential drugs to delay 

AD progression. 

 

MATERIALS AND METHODS 
 

Mendelian randomization analysis 
 

LTL-related GWAS data were obtained from the UK 

Biobank, with 446,367 participants undergoing LTL 

measurements. 
 

Data on genetic variants associated with AD were 

obtained from the GWAS database, ID number 

GCST90012877. p < 1e-8 was used as the genome-

wide threshold. After screening with continuous 

instability and weak variable removal tools, 59 enetic 

instrumental variables (IVs) were finally obtained.  

We determined positive results and causal associations 

by the inverse variance weighted algorithm. The 

results of the MR-Egger algorithm were used as a  

test to assess heterogeneity. The MR egger_intercept 

algorithm was used to detect the data’s diversity and 

evaluate the result’s robustness. The “RCiros” package 

was used to visualize the chromosomal location of 

SNPs associated with IVs. The summary-data-based 

Mendelian randomization (SMR) was used to screen 

the eQTL corresponding to IVs and obtain the related 

genes [14] (https://cnsgenomics.com/software/smr/). 

The data on the expression of IVs-related genes  

in various brain tissues were obtained from the  

GTEx eQTL summarized data (https://www.gtexportal. 

org/home/eqtlDashboardPage). 

 

Application of interaction networks 
 

The core gene NBR2 was obtained by taking the 

intersection of IVs-related genes from various brain 

tissues. lncRNA NBR2 expression in brain tissue was 

obtained from http://www.alzdata.org/. Downstream 

miRNAs and their maturation bodies were predicted 

using the LncRNA2Target V3.0 database (http://bio-

computing.hrbmu.edu.cn/lncrna2target/). Correspon-

ding mRNAs were expected from the TargetScan 

database (https://www.targetscan.org/vert_80/). The 

mRNAs with |Total context++ score|>0.6 were selected 

for subsequent analysis. Finally, NETWORK was used 

for the presentation. 

 

Functional and immunological enrichment of GJA1 

and related genes 

 

GSEA enrichment analysis of GJAI, KEGG pathway, 

and immune-related function was performed by 

“clusterProfiler.” Temporal Cortex data samples were 

divided into a high-expression group and a low-

expression group according to the target gene  

GJA1. The CIBERSORT algorithm demonstrated the 

expression group and the ratio of immune genes 

between different groups. The correlation between 

lymphocyte subpopulations and GJA1 was compared 

between the differences between the two groups.  

The GJA1-related gene clusters were screened by 

Spearman analysis with -0.6 < cor < 0.8 and p < 0.001. 

Subsequently, we visualized the GO, KEGG, immune 

cell correlation, and chromosomal location distribution 

of GJA1-related genes. 

 

Screening of potential therapeutic drugs 

 

Based on the Human Gene Interaction Network, we 

calculated the known drug’s relevant target of action,  

its own drug's appropriate target of action, and an AD-

related gene called proximity, which was converted into 

a z-score. P-values corresponding to the significance of 

each drug were computed by randomly perturbing the 

global network 1000 times. Based on the topological 

nature of the network, we performed subnetwork module 

mining to cluster drug targets and disease genes in each 

module. 

 

Statistical analysis 

 

We conducted a two-sample MR analysis using R 

software with the TwoSample MR and MR-PRESSO 

packages to explore the causal relationship between 

LTL and AD. The major method was random-effects 

inverse variance weighted (IVW), supplemented by MR 

Egger, weighted median, simple mode, and weighted 

mode. Heterogeneity was assessed using Cochran’s Q 

statistic (IVW) and Rucker’s Q statistic (MR Egger), 
with p > 0.05 indicating no heterogeneity. Horizontal 

pleiotropy was evaluated using the MR Egger intercept 

test and MR-PRESSO, with p > 0.05 indicating no 
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pleiotropy. MR-PRESSO also identified outliers. A 

“leave-one-out” analysis examined the influence of 

individual SNPs on the causal relationship. The MR-

PRESSO global test assessed horizontal pleiotropy (p > 

0.05), and the distortion test identified outliers, which 

were excluded before reassessing causal estimates. The 

Cross-platform normalized expression level of different 

genes in Entorhinal Cortex, Hippocampus, Temporal 

Cortex, and Frontal Cortex was assessed statistically by 

Student’s T-test. Meanwhile, correlation between the 

target gene expressions was studied by using Pearson’s 

correlation. GO and KEGG analysis were performed to 

calculate enrichment p-values using hypergeometric 

distribution tests. P-values were set at 0.05 for 

statistically significant differences. Data analysis was 

done using R Foundation version 4.2.0. 

 

RESULTS 
 

Leukocyte telomere length and Alzheimer’s 

syndrome 

 

GWAS data on leukocyte telomere length (LTL) 

associated with AD were obtained from open  

databases. The 59 SNPs strongly associated with AD 

after removing confounders and filtered by linkage 

disequilibrium and removing weak variables tools were 

treated as IVs (Figure 1A and Supplementary Table 1). 

Leave-one-out-analysis did not reveal abnormal SNP 

driving the association of IVs (Figure 1B). The scatter 

plots of the five MR analyses are shown in Figure 1C 

and Supplementary Table 2. The results of one of the 

IVW algorithms showed that LTL showed a negative 

correlation with AD. Heterogeneity was assessed by 

IVW and MR-Egger test, and p-value > 0.05 indicated no 

heterogeneity in the study (Figure 1D and Supplementary 

Table 3). Figure 1E demonstrates the location of IVs on 

chromosomes. As described in our previous analyses, 

we created a Sankey map of associated genes for IVs 

versus expression in various brain tissues to predict the 

expression of the genes related to IVs in brain tissues 

(Figure 1F and Supplementary Table 4). 

 

Analysis of genes corresponding to IVs 

 

For brain amygdala, brain anterior cingulate cortex 

BA24, brain caudate basal ganglia, brain cerebellum, 

brain cortex, brain frontal cortex BA9, brain 

hypothalamus, brain hippocampus, and brain nucleus 

accumbens basal ganglia-related genes were taken to 

intersect, and the core gene NBR2 was finally obtained 

(Figure 2A). We used the information in the AIZ 

database to visualize the expression of NBR2 in primary 
brain tissues (Figure 2B). NBR2 was used as a lncRNA, 

and we used miRNA-lncRNA interactions analysis to 

obtain the possible downstream miRNAs, mir-19A.  

mir-19A has the maturation bodies of mir-19-3p and 

mir-19-5p. Subsequent analysis was carried out using 

miRNA target prediction (Supplementary Tables 5, 6). 

The miRNA target prediction software TargetScan was 

utilized to analyze the miRNA-mRNA network (Figure 

2C). To ensure that the gene expression levels were 

consistent with the protein expression levels, we 

screened 469 genes related to highly expressed proteins 

based on the results of the data from Johnson ECB  

et al. (Supplementary Table 7). There were 106 NBR2-

related gene sets (Supplementary Table 8). Taking the 

intersection of protein data with gene data yielded 

NRXN1, ITGB8, GUCY1A2, GJA1, and DTNA 

(Figure 2D). 

 

Differences in gene expression levels in primary 

brain tissues 

 

We used the AIZ database information to visualize the 

ITGB8 (Figure 3A), GJA1 (Figure 3B), DTNA (Figure 

3C), NRXN1 (Figure 3D), and GUCY1A2 (Figure 3E) 

in Entorhinal Cortex, Hippocampus, Temporal Cortex, 

and Frontal Cortex Expression. Excluding NRXN1 and 

GUCY1A2, which had inconsistent gene and protein 

expression, we found that ITGB8, GJA1, and DTNA 

had the most significant expression differences in the 

Temporal Cortex. Among them, GJA1, with Log2FC = 

1.21, was the most important and was selected as our 

subsequent target gene. 

 

Functional exploration of GJA1 at the single gene level 

 

To verify the expression of GJA1 in the brain  

tissues of young and old populations, we can get  

that GJA1 is more expressed in the brain tissues  

of geriatric populations using immunohistochemistry 

data from the HPA database (Figure 4A). Using the 

immunofluorescence results of mouse brain tissue, we 

can see that GJA1 is mainly enriched in the cortical part 

of the brain (Figure 4B). Single gene GO analysis 

(Figure 4C), KEGG analysis (Figure 4D), and Immune-

related function analysis (Figure 4E) were performed 

for GJA1. The Temporal Cortex data samples were 

divided into high and low-expression groups according 

to the expression of the target gene GJA1, and the 

percentage of immune genes in the two groups was 

compared using the CIBERSORT algorithm (Figure 

4F). Further comparing the two groups' lymphocyte 

subpopulations, we can get T cell CD4 memory resting 

accounted for more in the high-expression group, and  

T cell follicular helper accounted for more in the low-

expression group (Figure 4G). Among them, T cell CD4 

memory resting was positively correlated with the 
expression of GJA1 (R=0.29, p=0.0052), and T cell 

follicular helper was negatively correlated with the 

expression of GJA1 (R=0.3, p=0.004).  
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Figure 1. Verification that leukocyte telomere length is correlated with Alzheimer's syndrome using Mendelian 
randomization. (A) MR analysis for LTL on AD. (B) Sensitivity verification using leave-one-out analysis. (C) Scatterplot representing the 
causal link between LTL and AD. The horizontal axis reflects the genetic effect of each SNP on LTL. The vertical axis reflects the genetic impact 
of each SNP on the risk of developing AD. (D) Heterogeneity was assessed by IVW and MR-Egger tests. (E) Distribution of IVs associated with 
the location of SNPs on chromosomes. (F) Sankey diagram of SNP → gene ← tissue type. 
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Figure 2. Analysis of genes corresponding to IVs-associated SNPs. (A) Venn diagram demonstrating that NBR2 is a core gene in 
various parts of the brain tissue. (B) Violin diagram demonstrating the expression of NBR2 in the significant components of the brain. (C) 
NETWORK diagram demonstrating miRNAs and mRNAs downstream of NBR2. (D) The Venn diagram demonstrates the high expression of 5 
genes at both the protein and gene levels. 
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Potential expanded functions of the GJA1 

 

We further explored the scalable functions of GJA1 in-

depth and screened the genes closely related to GJA1 

using Spearman analysis with p<0.001, -0.6<cor<0.8 

(Figure 5A). Finally, 18 related genes were obtained, 

which were GABRG3, RASGRF1, IDH3G, BEND5, 

NOTCH2, ATP1A2, CSRP1, GRAMD1C, PLSCR4, 

GRAMD3, HSPB3, ICA1, GFRA2, SLC39A12,  

GOT1, ADD3, PAX6, CCNA1. Figure 5B shows the 

chromosomal location distribution of GJA1-related 

genes. GO analysis suggested that GJA1-related genes 

were mainly enriched on the plasma membrane (Figure 

5C and Supplementary Table 9), and KEGG analysis 

suggested that they were mainly enriched on the Ras 

signaling pathway (Figure 5D and Supplementary Table 

10). The linkage of GJA1-related genes with immune 

cells is shown in Figure 5E. 

GJA1-related gene set prediction of potentially 

targeted AD drugs 

 

Based on the assumption that drugs are effective by 

targeting proteins within or near the corresponding 

disease module, we introduced an unsupervised and 

unbiased network framework to analyze the relationship 

between drugs and diseases. By linking the interactions 

network of drug targets with GJA1-related genes, we 

finally predicted that Adapalene, Rubidium Rb-82, 

Ammonia, Hexachlorophene, Vorinostat, Valine, Potas-

sium gluconate, Ouabain Cyclothiazide, Chlorthalidone, 

Mangafodipir, Cefotaxime, Cefalotin, Tranexamic acid, 

Cefmetazole, and Cefpiramide are potential target drugs 

(Figure 6A). Based on the topological nature of the 

network, we then performed subnetwork module mining 

to cluster the drug targets and disease genes in each 

module (Figure 6B).  

 

 
 

Figure 3. Differences in expression levels of 5 predicted mRNAs in primary brain tissues of AD patients. (A) ITGB8, (B) GJA1, (C) 

DTNA, (D) NRXN1, and (E) GUCY1A2 expression in Entorhinal Cortex, Hippocampus, Temporal Cortex, Frontal Cortex. 
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Figure 4. Functional exploration of GJA1 at the single-gene level. (A) Immunohistochemistry results demonstrating the expression of 
GJA1 in older populations. (B) Immunofluorescence demonstrating the enrichment of mouse brain tissue for GJA1 in the cortex. (C) GO 
analysis of GJA1. (D) KEGG analysis of GJA1. (E) Immune-related function analysis of GJA1. (F) Percentage of immune cells in the immune cell 
ratio between groups with high and low expression of GJA1 in Temporal Cortex. (G) Lymphocyte subpopulation occupancy in the two groups. 
(H, I) Correlation between lymphocyte subpopulation and GJA1 in the two groups. 
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DISCUSSION 
 

LTL is commonly associated with aging, with data from 

a UK biobank of over 450,000 individuals suggesting a 

link between LTL and human health status [15]. Several 

studies have suggested a link between LTL and age-

related cognitive decline in older adults. In a survey by 

Daniela et al., LTL shortening in AD patients appeared 

 

 
 

Figure 5. Analysis of GJA1-related genes. (A) Heatmap showing GJA1-related genes. (B) Chromosomal location distribution map of genes 
related to GJA1. (C) Circle map of GO analysis of the genes related to GJA1. (D) Circle map of KEGG analysis of the genes related to GJA1.  
(E) Correlation of the genes related to GJA1 with the immune cells. 
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to arise from progressive telomere erosion, which may 

be associated with cognitive decline in the transition 

from aMCI to AD [16]. From another perspective, 

reduced LTL indicates active cell proliferation and  

may reflect the immune system's involvement in AD 

pathogenesis [17]. However, in some studies, this 

association was relatively minor or absent [18]. Based 

on this, we hypothesized that in peripheral leukocytes, 

telomere length is associated with an increased risk  

of age-related phenotypes. We then used Mendelian 

randomization analysis to explore the causal link 

between AD and LTL, filling in the gap at the SNP 

level. 

 

80% of the human genome is non-coding RNAs 

involved in various biological functions [19]. There is 

 

 
 

Figure 6. GJA1-related gene set predicts subsequent AD-targeted drugs. (A) Network diagram showing predicted drugs and targets. 
(B) Drug targets and disease genes are clustered in a module. 
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evidence that miRNAs and lncRNAs are simultaneously 

engaged in AD ontogeny and development, including 

the formation and development of β-amyloid (Aβ) 

plaques, neuro progenitor fiber tangles, synapse loss, 

and neuronal death [20]. And they have specific 

temporal and spatial expression patterns. This suggests 

that LTL, our “aging clock,” is associated with 

lncRNAs, so we used the bioinformatics data from the 

AIZ database to select NBR2, a lncRNA with high 

expression of IVs-related genes in brain tissues, as  

the main entry point for our study. It interacts with 

AMPK and enhances AMPK activation under energy 

stress, thereby mediating cellular energy metabolism 

[21]. Currently, it is mainly used as a biomarker in 

hepatocellular carcinoma, colorectal cancer, thyroid 

cancer, and non-small cell lung cancer. Following this, 

downstream mature bodies mir-19-3p and mir-19-5p 

were obtained by miRNA-lncRNA interaction analysis. 

Downstream mir-19-3p can functionally inhibit protein 

translation of CCNA2 in the human body, thus affecting 

learning ability and memory in the brain [13]. 

 
NBR2, as a non-coding RNA, is not involved in protein 

translation, so we intersected its related gene data with 

data on highly expressed proteins in brain tissues and 

finally selected GJA1 as a subsequent target gene. 

GJA1, also known as connexin 43 (Cx43), functions as 

a connexin hemichannel and is involved in paracrine 

processes [22]. GJAI is predominantly expressed in 

mature astrocytes, and astrocyte gap junctions are 

critical for neuronal function. GJA1 was demonstrated 

to affect AD development by altering astrocyte function 

in a study by Yuji Kajiwara et al. This is consistent with 

our findings. 

 
Disease development is often not limited to single-gene 

defects, and our study explores the role of related gene 

clusters in AD development centered on target genes 

and more comprehensively demonstrates the function 

of NBR2 in this context. Based on the coordinated 

interactions of the gene clusters, we used a drug-

disease proximity measure to establish a gene-drug 

interaction network for predicting potential therapeutic 

drugs [23]. This method mainly uses the distance 

between the target gene corresponding to the drug  

and the target gene corresponding to the disease to  

indicate medicinal potential of medicines. The “proximal  

drugs” intervene in the endocrine system and metabolic 

processes, while the “distal drugs” are mainly anti-

inflammatory and pain relieving. We primarily screened 

cephalosporin antibiotics and adapalene, currently used 

as antibacterial and anti-inflammatory drugs [21, 24]. 

Interestingly, the drug Rubidium Chloride Rb-82 was 

found, a radioactive substance currently used in PET 

CT for the diagnosis of coronary heart disease and 

myocardial infarction [25]. 

Our study also has some limitations. Firstly, there is a 

lack of molecular biology experiments as additional 

validation. Secondly, there is no validation in terms  

of LTL in patients who clinically develop AD. In 

conclusion, we verified the causal link between LTL 

and AD using Mendelian randomization analysis and 

associated LTL-related lncRNAs. The downstream target 

genes were obtained by screening through interactions 

network analysis, which was used as a basis to explore 

the potential therapeutic drugs that might correspond to 

the relevant gene clusters. The evidence that LTL is 

associated with AD at the SNP level was supplemented, 

and the new gene-drug interaction network was used to 

screen for possible therapeutic drugs, providing fresh 

ideas for slowing down AD progression. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 4–7, 9, 10. 

 

Supplementary Table 1. IVs associated with LTL on AD. 

IVs associated with LTL on AD 

SNP beta se p 

rs10112752 0.036245368586056 0.335960595885184 0.914086302744282 

rs1023767 0.0318330876610498 0.598202328717915 0.957560936273678 

rs10845387 -2.23439804521506 0.770868499879615 0.00374896940811539 

rs111527438 0.1226420207984 0.808320154808 0.879404184404874 

rs115610405 0.135653125047028 0.331921070657474 0.682766504041688 

rs11579626 -0.67653853842701 0.635972285930905 0.287425566351911 

rs11646283 -1.03276164498491 0.633135927317576 0.102851350253984 

rs11866592 -0.0888565421036374 0.395789941163395 0.82236492450604 

rs12369950 -0.725930392584741 0.777176784832986 0.350272515749782 

rs12613375 0.299590252043144 0.760846716847368 0.693758967833938 

rs1291143 0.432281913149277 0.275809968471748 0.117040392785504 

rs12941945 -0.631233574145798 0.497076375695793 0.204122915970736 

rs13129697 -0.228596347825633 0.621621569699291 0.713065633921282 

rs13230646 -0.839831534225546 0.628136900332993 0.181216141950711 

rs1332941 -0.291483776011881 0.509999966268047 0.56763578614708 

rs137901416 -0.353778125262467 0.340121648626422 0.298269407866343 

rs139795227 -0.00912506310327856 0.734918273251148 0.990093374787841 

rs144204502 -0.438618984202677 0.433917038694891 0.312094907111989 

rs181647350 -0.914382859633444 0.345861126355731 0.00819844323220483 

rs182059586 -0.211057336184845 0.657071988141656 '0.748052127615715 

rs1907702 -0.519608790891665 0.769743554453666 0.49964944245128 

rs1980240 0.105908226509547 0.745852568573192 0.887083011457418 

rs1985369 0.669705295816193 0.465126151917485 0.149913853461556 

rs2056726 0.147247860566561 0.498332026017415 0.767626134727134 

rs2293607 -0.175791281699995 0.117004673984947 0.132986205123189 

rs2303262 0.144742056923011 0.239692079898186 0.545932293003809 

rs28502153 -0.0549658376581634 0.45240063767391 0.903296484974332 

rs3093888 0.144358322298347 0.737626939057053 0.844839964712432 

rs35640778 -0.589704286884422 0.170306915828354 0.000534988207818243 

rs35671754 0.714915646701244 0.829696721453537 0.388875194050772 

rs3891167 -0.290018592562576 0.278978713760175 0.298538569329448 

rs4435700 -0.308159027472066 0.211939422991374' 0.145947475094368 

rs4498805 0.741224448277236 0.629774507033154 0.23920827482734 

rs4530278 -0.11801644199059 0.70674935941438 0.867381962574147 

rs4724 0.0975753234171041 0.279984255974105 0.727462540965029 

rs4743037 -1.23284685697873 0.762271434828446 0.105806388376798 

rs4758644 -1.18132171212357 0.643015661549952 0.0661864946541454 

rs61748181 -0.500385615307278 0.521266249933256 0.3370841662439 

rs6590343 -1.51702332287106 0.795494585870592 0.056518121731675 

rs6669563 -0.44839645574255 0.524620452345387 0.39271370915957 

rs66731853 -1.21970213478748 0.567512463437407 0.031617942178875 
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rs6776756 -0.53846106593193 0.555723139539896 0.332576305186575 

rs73581419 0.247682240388448 0.662445036765026 0.708485409074085 

rs76219171 -0.413438596483427 0.564119745961388 0.463624575693405 

rs762810 -0.108553589522824 0.491309870506245 0.825133467053132 

rs76666449 0.268208322473189 0.528839065080898 0.612039504295859 

rs7705526 -0.445782206505743 0.142292531483644 0.00173113540311976 

rs7790856 -0.0192834938678268 0.238335937959602 0.935514417689642 

rs78491606 -0.421827731636853 0.561317277459934 0.452354161193265 

rs79228077 -0.554057619040488 0.76235760281677 0.467367680235681 

rs80324517 0.151612587526323 0.559452787897053 0.786389819706275 

rs8102497 1.09352745001804 0.641690413812528 0.0883557653618294 

rs8105767 0.237753801447695 0.319336341283376 0.456559089212273 

rs869785 1.87629640573512 0.677902038118029 0.00564362956915102 

rs871134 1.16439596808499 0.530562251542741 0.0281890491407611 

rs932002 0.0533718458002945 0.324472234345309 0.869346854618042 

rs939916 0.13349415552803 0.424216473992432 0.75300156033797 

rs9419958 -0.318804296586339 0.170001746112199 0.0607514454952407 

rs9923119 1.66453409680992 0.674964337571699 0.0136590626994769 

 

Supplementary Table 2. Mendelian randomization of exposures on the risk for AD. 

Mendelian randomization of exposures on the risk for AD 

Method nsnp beta se pval OR or_lci95 or_uci95 

MR Egger 59 -0.284772361 0.096200533 0.004473661 0.7521855 0.6229273 0.9082648 

Weighted 

median 
59 -0.204963971 0.07786336 0.008479532 0.8146767 0.6993694 0.948995 

Inverse 

variance 

weighted 

59 -0.192330809 0.057355096 0.000798442 0.8250339 0.73731 0.923195 

Simple mode 59 0.022117346 0.159358624 0.890097059 1.0223637 0.7480948 1.397186 

Weighted mode 59 -0.266739507 0.083141208 0.002175884 0.7658725 0.6507067 0.9014211 

 

Supplementary Table 3. Pleiotropy and heterogeneity of the 
causal association between LTL and AD. 

Heterogeneity 

Method Q Q_df Q-p-val 

MR Egger 86.80831 57 0.006663209 

Inverse variance weighted 88.98135 58 0.005524221 

Pleiotropy 

Method p-val 

egger_intercept 0.237224 

 

Supplementary Table 4. SMR analysis for cis-eQTL genetic variants used as the IVs for gene expression. 

Supplementary Table 5. The mRNA targets of miR-19-3p predicted. 

Supplementary Table 6. The mRNA targets of miR-19-5p predicted. 
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Supplementary Table 7. The gene names of upregulated expressed proteins in Alzheimer's disease (AD) brain 
drawn from public data (https://doi.org/10.1038/s41593-021-00999-y). 

 

Supplementary Table 8. The list of genes associated with GJA1 in AD brain tissue. 

gene_name1 gene_name2 cor_r p-value 

GJA1 ADD3 0.802371206904213 1.17341269039321E-21 

GJA1 CSRP1 0.820254711108708 2.61773616426948E-23 

GJA1 SLC39A12 0.801549080433322 1.38449947933484E-21 

GJA1 GABRG3 -0.637275526922121 1.1080578580304E-11 

GJA1 GFRA2 -0.607471408 1.71921683018262E-10 

GJA1 GJA1 1 0 

GJA1 GOT1 -0.608856007508237 1.52315537236684E-10 

GJA1 ICA1 -0.602400596892852 2.66545497842034E-10 

GJA1 IDH3G -0.626270516361077 3.15525095511253E-11 

GJA1 ATP1A2 0.824295131116415 1.04551338281366E-23 

GJA1 NOTCH2 0.808104375749031 3.62158286681252E-22 

GJA1 PAX6 0.822685726261586 1.51115845882501E-23 

GJA1 GRAMD1C 0.816757790187561 5.68767509823794E-23 

GJA1 PLSCR4 0.83129683399707 2.0132995105433E-24 

GJA1 RASGRF1 -0.601698028693054 2.83070247178229E-10 

GJA1 GRAMD3 0.829356830850272 3.20169444474726E-24 

GJA1 BEND5 -0.614344090684302 9.37105215524573E-11 

GJA1 CC01 -0.615299465425736 8.60296422575356E-11 

GJA1 HSPB3 -0.636926806041838 1.14615294142954E-11 

 

Supplementary Table 9. Gene Ontology (GO) enrichment analysis results. 

Supplementary Table 10. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway annotated 
classification results. 
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