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INTRODUCTION 
 

Lung cancer stands as the primary cause of cancer-

related fatalities, exhibiting a dismal 5-year survival rate 

of merely 22%, as reported [1]. Lung adenocarcinoma 

(LUAD), a highly aggressive subtype of non-small cell 

lung cancer (NSCLC), prevails as the most prevalent 

type, accounting for approximately 40% of all lung 

cancer cases [2]. LUAD originates from the small 

airway epithelia and type II alveolar cells, which 
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ABSTRACT 
 

Predicting prognosis in lung cancer patients is important in establishing future treatment and monitoring plans. 
Lung adenocarcinoma (LUAD) is the most common and aggressive type of lung cancer with dismal prognosis and 
prognostic stratification would help to guide treatment. Aberrant DNA methylation in tumors occurs earlier than 
clinical variations, and keeps accumulating as cancer progresses. Preliminary studies have given us some clues 
that DNA methylation might serve as a promising biomarker for prognosis prediction. Herein, we aimed to study 
the potential utility of DNA methylation pattern in predicting the recurrence risk of early stage resectable LUAD 
and to develop a risk-modeling signature based on differentially methylated regions (DMRs). This study 
consisted of three cohorts of 244 patients with stage I–IIIA LUAD, including marker discovery cohort (n = 39), 
prognostic model training cohort (n = 117) and validation cohort (n = 80). 468 DMRs between LUAD tumor and 
adjacent tissues were screened out in the marker discovery cohort (adjusted P < 0.05), and a prognostic signature 
was developed based on 15 DMRs significantly related to disease-free survival in early stage LUAD patients. The 
DMR signature showed commendable performance in predicting the recurrence risk of LUAD patients both in 
model training cohort (P < 0.001; HR = 4.32, 95% CI = 2.39–7.80) and model validation cohort (P = 0.009; HR = 
9.08, 95% CI = 1.20–68.80), which might be of great utility both for understanding the molecular basis of LUAD 
relapse, providing risk stratification of patients, and establishing future monitoring plans. 
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function in secreting mucus and other vital substances 

[2, 3]. In the case of early-stage NSCLC, surgical 

resection is widely deemed as the most effective and 

curative treatment modality. Nevertheless, despite 

complete resection, approximately half of patients with 

stage I–IIIA NSCLC experience recurrence and 

succumb within five years [4, 5]. Notably, a prior study 

revealed that postoperative relapse is the leading cause 

of mortality post-surgery [6], thereby emphasizing the 

clinical significance of assessing the individual patient’s 

risk of postoperative recurrence. 

 

The occurrence of molecular alterations in tumors 

precedes clinical manifestations, enabling effective and 

novel molecular biomarkers to precisely forecast the 

prognosis of patients and cancer recurrence. 

Furthermore, these biomarkers hold the potential in 

tailoring individualized treatment plans. Notably, all 

human cancers exhibit epigenetic aberrations, with 

cancer onset and progression being a culmination of 

genetic variations, epigenetic modifications, and 

environmental influences [7]. Among epigenetic 

alterations, DNA methylation safeguards against 

recombination events between repetitive sequences, 

thereby suppressing gene activity and maintaining 

genomic stability [8]. Cancer cells exhibit an abnormal 

methylation pattern, manifesting either as specific 

hypermethylation or widespread hypomethylation on 

the promoter of tumor suppressor genes [8, 9]. 

Numerous aberrant DNA methylation signatures, 

particularly those related to gene-specific promoter 

methylation, have also been discerned in lung cancer 

[10]. During the progression from a normal lung to 

atypical adenomatous hyperplasia and ultimately 

adenocarcinoma, a range of genes crucial for various 

cellular functions undergo epigenetic disruption. These 

include CDKN2A, MGMT (DNA repair gene), DAPK 

(alteration of apoptosis), RASSF1A (Ras signaling), 

RARb (retinoic acid signaling), and hTERT 

(immortalization). These hallmark genes, along with 

others, undergo epigenetic modifications at distinct 

phases of LUAD carcinogenesis [11–15]. Notably, 

CDKN2A emerged as the pioneering tumor suppressor 

gene discovered to be deactivated in lung cancer, 

predominantly via aberrant hypermethylation 

mechanisms [16]. Besides function in carcinogenesis, 

the inactivation of metastasis suppressor genes, 

exemplified by CDH11, assumes a pivotal role in the 

process of pulmonary metastasis [17]. 

 

Predicting prognosis in lung cancer patients is 

paramount for devising tailored treatment and 

surveillance strategies. While TNM staging has 
traditionally served as a prognostic indicator, recent 

advancements have incorporated molecular markers 

like EGFR, ALK, and PD-L1. Additionally, aberrant 

DNA methylation in lung cancer has emerged as a 

promising biomarker for prognostic assessment. 

Studies evaluating the prognostic value of methylation 

in lung cancer predominantly focused on patients with 

early-stage disease who underwent surgery, utilizing 

methylation-specific polymerase chain reaction to 

target methylation changes in known gene promoters. 

The methylation of promoter regions within a four-

gene panel, comprising APC, RASSF1A, p16, and 

CDH13, in surgically treated patients with stage I 

NSCLC was found to be associated with early tumor 

recurrence [18]. This groundbreaking study is 

significant as it presents the first evidence that DNA 

methylation markers can independently predict lung 

cancer prognosis, setting itself apart from traditional 

prognostic factors. It has also been reported that 

methylation in p16 and CDH13 serves as an effective 

prognostic biomarker in LUAD [19]. The hyper-

methylation of tumor suppressor gene promoters is 

predominantly linked to adverse outcomes. The 

concurrent methylation of more than four tumor 

suppressor genes was associated with inferior 2-year 

progression-free survival (PFS) in matched samples of 

NSCLC tumor tissue and adjacent normal tissue [20]. 

Specifically, the promoter methylation of BRMS1 was 

linked to decreased disease-free survival (DFS) among 

325 NSCLC patients undergoing surgical intervention 

[21]. Furthermore, elevated methylation levels of 

SHOX2 and PITX2 emerged as significant predictors of 

PFS in NSCLC patients who underwent surgical 

treatment [22]. Furthermore, through DNA methylation 

profiling utilizing microarrays encompassing 27,578 

cytosine-phosphate-guanine (CpG) sites, a specific 

gene set comprising 10 CpGs in 10 genes was 

associated with better prognosis in 48 patients with 

stage I NSCLC [23]. Moreover, 33 DNA methylation 

sites were identified as novel biomarkers of prognosis 

and recurrence and therapeutic targets for LUAD [24]. 

 

Preliminary studies pinpointed promising biomarkers 

for predicting the prognosis of early lung cancer  

based on aberrant methylation changes across  

diverse samples, anticipating that novel insightful 

methodologies will furnish even more valuable 

prognostic and predictive marker data. Since 

differentially methylated regions (DMRs) comprising 

multiple CpG sites have been shown to hold greater 

significance in cancer detection than individual CpG 

sites as reported in the literature [25], we have 

designated CpG sites that exhibit close genomic 

proximity and high correlation in their methylation 

levels as specialized methylation blocks. Herein, we 

aimed to explore the potential utility of DNA 
methylation pattern in predicting the recurrence risk of 

early stage resectable LUAD and to develop a risk-

modeling signature based on DMRs. 
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MATERIALS AND METHODS 
 

Patient and study design 

 

The study consisted of three cohorts, including marker 

discovery cohort (n = 39), prognostic model training 

cohort (n = 117) and prognostic model validation cohort 

(n = 80). All eligible patients with stage I–IIIA LUAD 

were enrolled from the First Affiliated Hospital of 

Southern University of Science and Technology. Tumor 

tissues and adjacent lung tissues were collected during 

surgical resection. The diagnosis of LUAD was founded 

upon the assessment of a pathological specimen 

subsequent to surgical resection. Researchers assigned 

pathological stages to all patients, adhering to the 8th 

edition of the American Joint Committee on Cancer 

(AJCC) classifications. Patients identified with stage 

IIIB/IV lung cancer, other types of cancer, anaemia, or 

autoimmune diseases were excluded from the study. 

LUAD samples with a tumor fraction less than 40% 

were excluded from the study. This study was conducted 

in accordance with the Declaration of Helsinki and 

approved by the Institutional Review Board of the First 

Affiliated Hospital of Southern University of Science 

and Technology (AUP-220516-CHR-0390-01). Written 

informed consents were obtained from all patients. The 

clinicopathologic characteristics of the three cohorts 

included in this study are summarized in Table 1. The 

baseline characteristics including age, sex, smoking 

history and TNM stage were collected for all the three 

cohorts and the survival was collected for the model 

training and validation cohorts only. 

 

The marker discovery cohort was used to identify 

LUAD-specific DMRs, the prognostic training cohort 

was used to develop a risk-modeling signature based on 

the above DMRs and the prognostic validation cohort 

was used to validate the developed signature. 

 

Target methylation sequencing and data pre-

processing 

 
The procedure for DNA extraction was as previously 

described [26]. In summary, for tissue samples, the 

DNA extraction process was carried out utilizing the 

QIAamp DNA formalin-fixed and paraffin-embedded 

tissue kit, adhering rigorously to the manufacturer’s 

prescribed instructions. Subsequently, DNA 

concentration was quantified using the Qubit double-

stranded DNA assay (Life Technologies, Carlsbad, CA, 

USA). 

 

As for methylation sequencing, a capture-based 
approach was employed to identify CpG sites. The 

bisulfite sequencing library was constructed utilizing 

the brELSATM methodology (Burning Rock Biotech, 

Guangzhou, China) [27]. Subsequently, the targeted 

libraries underwent quantitative analysis through real-

time PCR and were sequenced on NovaSeq 6000 

achieving an average target depth of 500×. With the  

raw sequencing data, a suite of bioinformatics tools, en-

compassing Trimmomatic, BWA-meth, and samblaster 

were deployed to facilitate read alignment and variant 

calling as part of the downstream analytical pipeline. 

Notably, as reported, DMRs comprising multiple CpG 

sites played more pivotal roles in cancer detection 

compared to individual CpG sites [28]. Methylation 

blocks were designated as CpG sites exhibiting close 

genomic proximity and a high degree of correlation in 

their methylation levels. Utilizing the 80,672 CpG sites, 

a total of 8,312 such blocks were identified. The score 

for each block was calculated, incorporating both the 

depth of coverage and the distance between adjacent 

CpG sites as follows [29]: 
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For a specified methylation block, n represents the 

aggregate number of reads encompassing several CpG 

sites, and Li designates the number of CpG sites covered 

on ith read. The length of consecutive methylated CpG 

sites exceeding 1 is denoted as lij, and m signifies the 

total counts on ith read. To normalize the depth 

variation, the number of reads within each block is 

employed, thereby constraining the metric within the 

range of 0 to 1. 

 

Marker selection for LUAD 

 

DMRs between LUAD samples and matched adjacent 

tissue samples were identified in the marker discovery 

cohort (LUAD: n = 39; matched normal tissue: n = 39) 

with the cutoff values determined as the absolute value 

of mean difference of methylation levels >0.1 and 

adjusted P-value < 0.05. 

 

Construction and validation of a DMR signature 

related to recurrence 

 

To screen DMRs related to the DFS of LUAD patients 

in the model training cohort (n = 117), a univariable 

Cox regression analysis was employed. To minimize the 

risk of overfitting, we used the Least Absolute 

Shrinkage and Selection Operator (LASSO) penalized 

Cox regression analysis to construct a prognostic risk 

model. The LASSO algorithm selects and contracts the 

variables through R package “glmnet” so that some of 

the regression coefficients are strictly equal to zero, 

resulting in an interpretable model. The risk score of 
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Table 1. Baseline characteristics of the cohorts included in the study. 

Characteristics 
Marker discovery cohort  

(n = 39) 
Model training cohort  

(n = 117) 
Model validation cohort  

(n = 80) 

Sex    

Male 24 (61.5%) 61 (52.1%) 39 (48.8%) 

Female 15 (38.5%) 56 (47.9%) 41 (51.2%) 

Age    

<65 yrs 26 (66.7%) 83 (70.9%) 42 (52.5%) 

≥65 yrs 13 (33.3%) 34 (29.1%) 38 (47.5%) 

Smoking history    

Yes 21 (53.8%) 60 (51.3%) 25 (31.3%) 

No 17 (43.6%) 57 (48.7%) 55 (68.7%) 

NA 1 (2.6%)   

AJCC stage    

I 39 (100.0%) 46 (39.3%) 60 (75.0%) 

II  28 (23.9%) 7 (8.7%) 

IIIA  43 (36.8%) 13 (16.3%) 

 

each patient was calculated according to the methylation 

values of selected DMRs and the corresponding 

regression coefficients: 

1

n

i i

i

Risk score MBS Coef
−

=   

For each patient, n represents the number of DMRs with 

prognostic value, MBSi is the methylation block score of 

DMR i, and Coefi represents the regression coefficient 

of DMR i. 

 

Patients were categorized into high-risk and low-risk 

groups utilizing the risk score threshold determined from 

the training set. Survival analysis was performed by R 

packages “survival” and “survminer” to analyze DFS 

between the high-risk and low-risk patients. To assess 

the predictive accuracy of the prognostic DMR 

signature, a time-dependent receiver operating charac-

teristic (ROC) curve analysis was conducted with 

“timeROC” R package. Both univariable and 

multivariable Cox regression analyses were performed, 

aiming to uncover the independent prognostic 

significance of the risk score. In addition, the calculation 

of risk score, grouping of samples, survival analysis, 

ROC analysis, and univariable and multivariable Cox 

regression analyses were also performed in the 

validation cohort (n = 80) for independent validation. 

The study design is shown in Figure 1 by a flow chart. 

 

 
 

Figure 1. Work flow of the study. Abbreviations: LUAD: lung adenocarcinoma; DMR: differentially methylated region; LASSO: least 

absolute shrinkage and selection operator. 
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Comparison of risk score between clinical subgroups 

 

Samples in both model training and validation cohorts 

were divided into subgroups according to several 

clinical characteristics including sex, age, smoking 

history, and TNM stage. The comparison of risk scores, 

derived from the DMR signature, was conducted 

between different subgroups. 

 

Functional enrichment analysis 

 

Gene enrichment analysis targeting the biological process 

and biological pathways in the genes corresponding to 

the DMRs was via the “clusterProfiler” R package 

combined with Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database. 

 

Statistical analysis 

 

R software (version 4.2.0; https://www.R-project.org) 

was used for all statistics. Wilcoxon test was used to 

screen DMRs. Kaplan-Meier (KM) curves were drawn, 

and the difference of DFS between risk groups was 

tested by Log-rank test. The area under ROC curve 

(AUC) was used to judge the accuracy of predicting. 

The comparison of risk score between different clinical 

subgroups was via Wilcoxon test. For all analyses in the 

study, P < 0.05 was considered statistically significant. 

 

Data availability statement 

 

The relevant data supporting the findings of this study 

are available within the paper. Due to ethical and 

privacy concerns, we are unable to publish the patient-

level data in our study, of which readers may contact 

the corresponding authors for access for non-

commercial purposes. 

 

RESULTS 
 

Identification of DMRs in early stage LUAD patients 

 

In order to better reflect the LUAD-associated 

methylation alteration, we first tried to identify DMRs 

in LUAD by comparing 39 stage Ⅰ LUAD samples and 

39 matched adjacent lung tissue samples in the marker 

discovery cohort. Investigation of DMRs between the 

two groups yielded a total of 468 DMRs, which 

included 438 hypermethylated regions and 30 

hypomethylated regions (Figure 2A and Supplementary 

Table 1). Principal component analysis showed an 

obvious difference between LUAD tumor and adjacent 

tissues based on the methylation value of 468 DMRs 

(Figure 2B). Heat map of the 468 DMRs shows the 

hypo- and hypermethylated regions in LUAD compared 

with adjacent lung tissues (Figure 2C). Most of the 

DMRs located in the CpG islands and transcription start 

site of promoter (59.1%), and contributed to protein-

coding (80.4%) (Figure 2D). In addition, the genes 

corresponding to the DMRs were mostly enriched in the 

biological processes including cell fate specification, 

cell fate commitment, pattern specification process, 

embryonic organ morphogenesis, and embryonic 

skeletal system morphogenesis (Supplementary Figure 

1A), and the signaling pathways including trans-

criptional misregulation in cancer, maturity-onset 

diabetes of the young, and cAMP signaling pathway 

(Supplementary Figure 1B). 

 

Construction of a 15-DMR prognostic signature in 

early stage LUAD patients 

 

We then aimed to develop a signature with prognostic 

value in the model training cohort based on the above 

identified DMRs. We performed univariable Cox 

regression analysis and 41 DMRs were found to be 

related to the DFS of 117 stage I–IIIA LUAD patients, 

which was followed by LASSO penalized Cox 

regression analysis. A total of 15 DMRs were ultimately 

incorporated into the recurrence risk predicting model 

construction (Figure 3A). Hazard ratio with 95% 

confidence interval (CI) and P-value of the 15 DMRs 

are shown in Figure 3B. Among them, the methylation 

value of Chr7: 121956469–121956812 was highly 

negatively associated with the risk of recurrence (P = 

0.03, HR = 0.60, 95% CI = 0.38–0.95; Supplementary 

Figure 2A), while the methylation value of Chr12: 

52214765–52214877 was highly positively associated 

with the risk of recurrence (P = 0.02, HR = 1.69, 95% 

CI = 1.07–2.69; Supplementary Figure 2B). In addition, 

the gene annotation of the 15 DMRs is summarized in 

Supplementary Table 2. 

 

LUAD samples in the model training cohort were then 

segregated into low-risk and high-risk groups utilizing a 

risk score threshold of −1.44. A comparison was then 

conducted, examining the methylation values of these 

15 DMRs between the two risk groups. The value of 

Chr10: 101295771–101295802, Chr5: 72678348–

72678362, Chr1: 91184901–91185174, Chr6: 

78172227–78172500, Chr15: 89920989–89921000, 

Chr7: 121956469–121956812, Chr19: 35630031–

35630097, Chr19: 35630099–35630164, and Chr3: 

138679199–138679210—which were negatively 

associated with the risk of recurrence—were 

significantly higher in the low-risk group, while  

the value of Chr12: 52214765–52214877, Chr5: 

16179933–16180189, Chr16: 22825309–22825446, 

Chr12: 130823681–130823754, Chr12: 130823619–
130823681, and Chr14: 51560315–51560326—which 

were positively associated with the risk of recurrence—

were significantly higher in the high-risk group 
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(P < 0.05; Figure 3C). The KM curve distinctly 

demonstrated a significantly shorter DFS among high-

risk patients compared to their low-risk counterparts 

(P < 0.001, HR = 4.32, 95% CI = 2.39–7.80; Figure 

3D). To assess the predictive proficiency for recurrence 

risk, time-dependent ROC curve analyses were 

conducted, and the AUC was 0.775 at 1 year, 0.773 at 3 

years and 0.805 at 5 years, collectively indicating a 

robust predictive performance of the DMR signature 

(Figure 3E). Risk scores had no significant difference 

between the different age, sex, and smoking history 

groups, but were obviously higher in stage II and IIIA 

compared to stage Ⅰ (stage II vs. stage Ⅰ: P = 0.008, 

stage IIIA vs. stage Ⅰ: P = 0.02; Figure 3F). 

 

 
 

Figure 2. Identification of DMRs in the patients with early stage LUAD. (A) Difference analysis yielded a total of 468 DMRs, 

including 438 hypermethylated regions and 30 hypomethylated regions in the marker discovery cohort (LUAD: n = 39; normal: n = 39). 
(B) Principal component analysis between LUAD and normal lung samples based on the methylation value of 468 DMRs. (C) Heatmap of the 
468 DMRs in the marker discovery cohort. (D) Annotation information of the 468 DMRs, including location and the function of 
corresponding genes. 
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To further assess the prognostic significance of the DMR 

signature, univariable and multivariable Cox regression 

analyses were conducted on the most relevant clinical 

variables of LUAD patients in the training set. 

Results showed that the risk score was significantly 

associated with the DFS of patients adjusted for age, sex, 

smoking history, and TNM stage (univariable: P < 

0.001, HR = 4.32, 95% CI = 2.39–7.80; multivariable:

 

 
 

Figure 3. Construction of a 15-DMR prognostic signature in the model training cohort. (A) LASSO penalized Cox regression 

analysis yielded 15 DMRs for the recurrence risk predicting model construction. (B) Hazard ratio with 95% confidence interval (CI) and  
P-value of the 15 DMRs in the univariable Cox regression analysis for disease-free survival (DFS). (C) Heatmap of the methylation value of 
the 15 DMRs in low-risk (n = 45) and high-risk (n = 72) groups. (D) Kaplan-Meier (KM) curves for DFS in the model training cohort. (E) Time-
dependent receiver operating characteristic (ROC) curves in the model training cohort. (F) Comparison of the risk score in the different 
clinical subgroups including age, sex, smoking history, and TNM stage. 
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Table 2. Univariable and multivariable Cox regression analysis in the training cohort. 

Parameter 

Model training cohort (n = 117) 

Univariable Cox analysis Multivariable Cox analysis 

HR (95% CI) P-value HR (95% CI) P-value 

Age (≥65 vs. <65) 0.95 (0.58–1.58) 0.86 0.92 (0.55–1.55) 0.77 

Sex (male vs. female) 1.25 (0.79–1.98) 0.33 1.49 (0.87–2.57) 0.15 

Smoking history (yes vs. no) 0.97 (0.62–1.53) 0.90 0.78 (0.46–1.33) 0.36 

Stage (stage II–IIIA vs. stage I) 3.77 (2.18–6.54) <0.001* 2.96 (1.68–5.23) <0.001* 

Risk score (high vs. low) 4.32 (2.39–7.80) <0.001* 3.37 (1.82–6.23) <0.001* 

Note: *represents a statistically significant difference. 

 

P < 0.001, HR = 4.46, 95% CI = 2.46–8.11; Table 2). In 

conclusion, the results above suggested that the 15-

DMR signature had a good performance in predicting 

the risk of recurrence for patients with early stage 

LUAD in the model training cohort. 
 

Performance of the 15-DMR signature in the model 

validation cohort 
 

To validate the stability of the DMR signature, utilizing 

the identical algorithm, the risk score for each patient 

was further computed within the model validation 

cohort. 80 stage Ⅰ–ⅢA LUAD samples were also 

stratified into high-risk and low-risk groups by the same 

cutoff value. Consistent with the training cohort, the 

value of Chr10: 101295771–101295802, and Chr3: 

138679199–138679210 were significantly increased in 

the low-risk group, while the value of Chr12: 

52214765–52214877, Chr12: 130823619–130823681, 

Chr12: 130823681–130823754, Chr16: 22825309–

22825446, and Chr14: 51560315–51560326 were 

significantly increased in the high-risk group (P < 0.05; 

Figure 4A). In addition, a notable difference was 

observed that high-risk patients exhibiting significantly 

shorter DFS compared to their low-risk counterparts 

(P = 0.009, HR = 9.08, 95% CI = 1.20–68.80; Figure 

4B). The AUC for predicting risk of recurrence reached 

0.757 and 0.686 at 1 and 3 years, respectively (Figure 

4C). Risk scores were not statistically different between 

clinical subgroups (Figure 4D). 
 

Furthermore, both univariable and multivariable Cox 

regression analysis indicated a robust association 

between the risk score and the likelihood of recurrence 

in patients with early stage LUAD (univariable: P = 

0.03, HR = 9.08, 95% CI = 1.20–68.80; multivariable: 

P = 0.04, HR = 8.50, 95% CI = 1.08–66.56; Table 3). In 

addition to risk score, as expected, TNM stage is an 

independent risk factor for prognosis. Thus, a 

nomogram incorporating the risk score and stage was 
devised to better identify patients of their risk of 

recurrence (Supplementary Figure 3). Altogether, we 

developed and validated a 15-DMR signature that was 

associated with prognosis of patients with LUAD. 

DISCUSSION 
 

Extensive research on genetic mutations has shed 

crucial mechanistic insights into the tumorigenic 

processes of diverse tumors. However, it is increasingly 

evident that epigenetic alterations also occupy a pivotal 

role in cancer progression. Among these, alterations in 

DNA methylation patterns stand out as the most 

quantifiable and well-characterized epigenetic changes 

in cancer [30]. In addition, the reversibility of DNA 

methylation presents a potential to facilitate the 

monitoring of therapeutic outcomes [31], suggesting it 

could pioneer a novel approach for predicting LUAD 

recurrence and enhancing its prognostic outcomes. 
 

In the process of carcinogenesis, certain genes can be 

activated due to the loss of CpG island methylation, 

often coupled with the absence of maternal or paternal 

imprinting [32]. However, a more prevalent alteration 

observed in CpG islands is hypermethylation, serving as 

a pivotal mechanism for gene inactivation, typically 

involving those genes that typically play a crucial role 

in negatively regulating cell growth. The well-

established connection between cytosine residue 

methylation in promoters and the subsequent trans-

criptional silencing of genes has been extensively 

documented [33–35]. Virtually all types of human 

cancers investigated exhibit hypermethylation of CpG 

islands [36, 37], including lung cancer [38, 39].  
 

In our study, 468 DMRs were discovered between the 

early stage LUAD samples and adjacent lung samples in 

the marker selection cohort. Most of the DMRs were 

located in the CpG islands and transcription start site of 

promoter with hypermethylation, which was consistent 

with previous studies [38, 39]. Of all the DMRs, the 

methylation levels of 41 DMRs were significantly 

associated with the DFS of patients with LUAD. A total of 

15 DMRs were subsequently utilized to construct a 

signature for predicting the recurrence risk of LUAD 

patients in the training cohort, and the risk score generated 

from the DMR signature was negatively associated with 

the DFS of patients. The prognostic effect was sub-

sequently verified in a validation cohort. 
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Table 3. Univariable and multivariable Cox regression analysis in the validation cohort. 

Parameter 

Model validation cohort (n = 80) 

Univariable Cox analysis Multivariable Cox analysis 

HR (95% CI) P-value HR (95% CI) P-value 

Age (≥65 vs. <65) 2.02 (0.73–5.56) 0.17 1.82 (0.63–5.27) 0.27 

Sex (male vs. female) 2.46 (0.86–7.09) 0.10 2.56 (0.59–11.07) 0.21 

Smoking history (yes vs. no) 2.25 (0.84–6.00) 0.11 0.88 (0.22–3.57) 0.86 

Stage (stage II–IIIA vs. stage I) 5.18 (1.91–14.04) 0.001* 4.73 (1.63–13.69) 0.004* 

Risk score (high vs. low) 9.08 (1.20–68.80) 0.03* 8.50 (1.08–66.56) 0.04* 

Note: *represents a statistically significant difference. 

 

The 15 DMRs included in the signature corresponded 

to the following genes—PIWIL1, HTR1B, HS3ST2, 

NKX2-3, FIGNL2, FXYD1, FEZF1, TRIM9, etc., 

among which several genes have been investigated for 

the role in LUAD. PIWIL1 is a member of PIWI family 

and can bind to PIWIL-interacting RNAs during 

spermatogenesis [40]. Increasing evidence indicates that 

PIWIL1 is frequently expressed in diverse cancer types, 

including lung cancer, hinting at its potential oncogenic 

roles in cancer development or progression [41–44]. 

A study uncovered an association between elevated 

PIWIL1 expression and reduced survival rates among 

patients with LUAD. Overexpression of PIWIL1 

promotes proliferation, invasion, and migration in 

LUAD cells, and conversely, its downregulation 

exhibits opposite effects [45]. In our study, two DMRs 

located in the 1st intron of PIWIL1 exhibited 

hypermethylation in the high-risk group, suggesting that 

the intron methylation levels of PIWIL1 might be 

involved in regulating PIWIL1 expression. A prognostic 

 

 
 

Figure 4. Performance of the DMR signature in the model validation cohort. (A) Heat map of the methylation value of the 
15 DMRs in low-risk (n = 27) and high-risk (n = 58) groups. (B) KM curves for DFS in the model validation cohort. (C) Time-dependent ROC 
curves in the model validation cohort. (D) Comparison of the risk score in the different clinical subgroups including age, sex, smoking 
history, and TNM stage. 
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signature of 8 genes including MYBPH, GUCA2A, 
AZGP1, INPP5J, SPIB, SLC15A1, HTR1B, and 

TNFSF11, was developed to determine the risk of 

recurrence in LUAD. This model revealed that patients 

with higher risk scores exhibited significantly shorter 

recurrence-free survival durations compared to those 

with lower risk scores [46]. In this study, the expression 

of HTR1B was observed to be positively correlated with 

the recurrence, which is consistent with our result that 

HTR1B was hypomethylated in high-risk patients. 

HS3ST2, a constituent of the heparan sulfate 

biosynthetic enzyme family, demonstrates heparan 

sulfate glucosaminyl 3-O-sulfotransferase activity, 

essential for modifying glycosaminoglycan chains. 

Notably, hypermethylation of HS3ST2 has been 

documented in diverse cancer types, including breast 

cancer [47, 48], colorectal cancer [47, 49], gastric 

cancer [50] and lung cancer [47], etc. It was reported 

that patients with HS3ST2 hypermethylation had poor 

overall survival (OS) in 193 stage I-II NSCLCs, upon 

adjustment for factors such as sex, age, tumor size, 

differentiation, adjuvant therapy, and recurrence [51]. 

Similar result was observed in our study that 

hypermethylated HS3ST2 was associated with shorter 

DFS of patients with LUAD. 

 

DNA methylation in limited CpG sites has been 

studied in predicting the prognosis of LUAD patients. 

Three methylation CpG sites (cg15386964, 

cg14517217, and cg18878992) that were associated 

with the prognosis of LUAD were selected in TCGA-

LUAD set, which was followed by a validation in 

Chinese population. The risk of mortality in LUAD 

patients escalated with a progressive rise in the 

methylation signature, derived from the assessment of 

three methylation site levels [52]. Another study 

reported a prognosis signature including six DNA 

methylation sites based on the TCGA database. The 

discrimination effect of this DNA methylation 

signature for the OS of LUAD patients was obvious 

[53]. A prognostic signature encompassing 16 CpG 

sites was devised and validated utilizing DNA 

methylation, RNA-seq, and clinical data sourced from 

LUAD patients in the TCGA database. This study 

showed stable prognostic performance to assess the 

OS of patients with LUAD in the stratified cohorts 

[54]. In sum, most of the DNA methylation prognostic 

signatures of limited CpG sites were developed from 

the methylation microarray data of TCGA, and 

validated in the methylation data generated from 

another platform. However, in our study, the DNA 

methylation signature was constructed based on 

DMRs, which have been unveiled to hold greater 
significance in cancer detection than individual CpG 

sites [25], and might be more appropriate markers in 

predicting prognosis. The marker selection, model 

training, and performance validation of the DMR 

signature were totally carried out in three in-house 

clinical cohorts and a uniformed platform and 

sequencing panel was used, further improving the 

reliability of our results. Further, we focused on the 

recurrence risk of LUAD patients after surgery, thus 

DFS was included in our study. From what has been 

discussed above, our study provides new insights on 

enhancing the clinical management of early-stage 

LUAD by refining risk stratification utilizing 

methylation profile. 
 

However, this study has several limitations that need to 

be clearly addressed. First, besides surgery, other 

detailed information on adjuvant treatment for the three 

cohorts was not available in this study. Second, the 

sample size of the marker discovery cohort is limited. 

The DMR signature is yet to be optimized to be more 

feasible for clinical application. Third, further 

validation, such as prospective studies with larger 

sample sizes, is still required to validate the DMR 

signature and assess its reliability in different settings. 

Moreover, efforts should be directed toward integrating 

the DMR signature with complementary prognostic 

markers, encompassing clinicopathological parameters, 

genomic mutations, and gene expression profiles, to 

optimize the predictive ability of the risk model. 

 

CONCLUSION 
 

To sum up, the DMRs between LUAD and normal lung 

samples were screened out, and a prognostic signature 

for recurrence risk prediction was determined based on 

15 DMRs in early stage LUAD patients. The DMR 

signature shows commendable performance in 

predicting the risk of recurrence in LUAD patients both 

in model training and validation cohorts, which might 

hold significant potential for understanding the 

molecular underpinnings of LUAD relapse, providing 

risk stratification of patients, and establishing future 

monitoring plans. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. GO analysis (A) and KEGG analysis (B) of the genes corresponding to the DMRs. 

 

 

 

 
 

Supplementary Figure 2. Survival analysis of the DMR with the minimum HR (A) and maximum HR (B) for DFS. 
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Supplementary Figure 3. Nomogram integrating risk score and TNM stage for DFS prediction in the validation cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Identification of DMRs between LUAD samples and matched adjacent tissue samples in 
the marker discovery cohort. 
 

Supplementary Table 2. Gene annotation of the 15 DMRs included in the prognostic signature. 

DMR Gene Location 

Chr1:91184904-91185172 BARHL2 Intergenic 

Chr10:101295774-101295800 NKX2-3 3'UTR (NM_145285, exon 2 of 2) 

Chr12:130823622-130823679 PIWIL1 intron (NM_001190971, intron 1 of 19) 

Chr12:130823684-130823752 PIWIL1 intron (NM_001190971, intron 1 of 19) 

Chr12:52214768-52214875 FIGNL2 exon (NM_001013690, exon 2 of 2) 

Chr14:51560318-51560324 TRIM9 intron (NM_052978, intron 1 of 6) 

Chr15:89920992-89920998 MIR9-3HG promoter-TSS (NR_015411) 

Chr16:22825312-22825444 HS3ST2 promoter-TSS (NM_006043) 

Chr19:35630034-35630095 FXYD1 promoter-TSS (NM_001278718) 

Chr19:35630102-35630162 FXYD1 promoter-TSS (NM_001278718) 

Chr3:138679202-138679208 FOXL2NB Intergenic 

Chr5:16179936-16180187 44631 promoter-TSS (NR_149044) 

Chr5:72678351-72678360 LINC02230 Intergenic 

Chr6:78172230-78172498 HTR1B exon (NM_000863, exon 1 of 1) 

Chr7:121956472-121956810 FEZF1 Intergenic 
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