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INTRODUCTION 
 

Alzheimer’s disease (AD) is characterized by a 

progressive deterioration in new learning and memory. 

This neurodegenerative disorder has multiple 

etiologies [1], with aging identified as the primary risk 

factor. Factors associated with normal aging may 

hasten disease progression. For example, basal 

metabolic rate declines with age due to deficits in 

muscle mass, vasoconstriction, glucose metabolism, 

insulin signaling and thermoregulation [2]. All of 

which leads to a reduction of core body temperature 

(Tc) [3]. 
 

Low Tc is a biomarker of longevity [4, 5] and 

exposure to hypothermic environmental temperatures 
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ABSTRACT 
 

A thermoregulatory decline occurs with age due to changes in muscle mass, vasoconstriction, and metabolism 
that lowers core body temperature (Tc). Although lower Tc is a biomarker of successful aging, we have 
previously shown this worsens cognitive performance in the APP/PS1 mouse model of Alzheimer’s disease 
(AD). We hypothesized that elevating Tc with thermotherapy would improve metabolism and cognition in 
APP/PS1 mice. From 6–12 months of age, male and female APP/PS1 and C57BL/6 mice were chronically housed 
at 23 or 30°C. At 12 months of age, mice were assayed for insulin sensitivity, glucose tolerance, and spatial 
cognition. Plasma, hippocampal, and peripheral (adipose, hepatic, and skeletal muscle) samples were procured 
postmortem and tissue-specific markers of amyloid accumulation, metabolism, and inflammation were 
assayed. Chronic 30°C exposure increased Tc in all groups except female APP/PS1 mice. All mice receiving 
thermotherapy had either improved glucose tolerance or insulin sensitivity, but the underlying processes 
responsible for these effects varied across sexes. In males, glucose regulation was influenced predominantly by 
hormonal signaling in plasma and skeletal muscle glucose transporter 4 expression, whereas in females, this 
was modulated at the tissue level. Thermotherapy improved spatial navigation in male C57BL/6 and APP/PS1 
mice, with the later attributed to reduced hippocampal soluble amyloid-β (Aβ)42. Female APP/PS1 mice 
exhibited worse spatial memory recall after chronic thermotherapy. Together, the data highlights the metabolic 
benefits of passive thermotherapy, but future studies are needed to determine therapeutic benefits for those 
with AD. 
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triggers adaptive metabolic enhancements. However, 

the advantageous aspects of lower Tc may adversely 

affect cognition. Mild hypothermia impairs cognitive 

performance in rats [6, 7], nonhuman primates [8], and 

humans [9]. Alertness and cognition are strongly 

correlated with Tc whereby maximal mental 

performance is observed at higher temperatures [10]. 

Additionally, working, short-term, and long-term 

memory performance is decreased in humans during 

endogenous periods of lower Tc [10–12]. In vitro 

studies have demonstrated that amyloid fibril 

formation and tau hyperphosphorylation, both 

pathological hallmarks associated with AD, are 

accelerated at lower temperatures [13, 14]. This 

potentially indicates a dualistic relationship between 

the mechanisms facilitating successful physiological 

aging and those contributing to pathological disease 

progression. 

 

In our prior study, we demonstrated that APP/PS1 mice 

subjected to chronic 16°C conditions exhibited 

improved insulin sensitivity. However, spatial learning 

and memory recall remained impaired, with females 

experiencing more pronounced deficits compared to 

littermates housed at ambient (23°C) temperatures [15]. 

We also observed increased hippocampal plaque burden 

in male APP/PS1 mice, similar to observations in 3xTg 

mice when exposed to hypothermic environmental 

temperature [16]. Alternatively, increasing Tc may be 

an effective strategy to treat AD. Passive thermotherapy 

positively modulates health benefits across physical, 

cardiovascular, and metabolic disorders [17] that are 

known AD risk factors [1]. 

We hypothesized that elevating Tc would enhance 

metabolism, thereby resulting in improved learning and 

memory in the amyloidogenic APP/PS1 AD mouse 

model. Double transgenic APP/PS1 mice express a 

chimeric mouse/human amyloid precursor protein 

(APP, Swe695) and a mutant human presenilin (PS)1 

lacking exon 9 (ΔE9). These mutations overexpress the 

amyloid precursor protein with preferential cleavage of 

amyloid-β (Aβ)42 isoforms [18]. Amyloid accumulation 

and subtle cognitive impairments are observed at 6 

months of age and become prominent by 12 months 

[19]. We have previously shown APP/PS1 mice develop 

impairments in insulin sensitivity and glucose 

homeostasis that contribute to their cognitive deficits 

[20]. Starting at 6 months of age APP/PS1 and C57BL/6 

littermate control mice were chronically housed in a 

30°C controlled environmental chamber for 6 months. 

Translationally, this time frame corresponds to 

conversion from MCI to AD, allowing us to determine 

the effects of mild hyperthermia on metabolism and 

cognitive function during disease progression. 

 

RESULTS 
 

Core body temperature 

 

Tc was determined in a cohort of 11–12 month old mice 

maintained at ambient temperature since birth. Mice 

were then chronically exposed to thermotherapy (30°C) 

for one month before Tc was measured. Thermotherapy 

increased Tc in all groups of mice except female 

APP/PS1 (Figure 1). The descriptive statistics for all bar 

graphs are shown in Table 1. 

 

 
 

Figure 1. Effects of thermotherapy on Tc. Rectal temperature was determined before (23°C) and after one month of thermotherapy 

treatment (30°C). The number of animals is inset on each bar graph. A two-tailed t-test was used to determine changes in Tc within a 
genotype. *p < 0.05, **p < 0.01. 
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Table 1. Descriptive statistics for all bar graphs. 

Figure (units) 
Male 

C57BL/6 

23°C 

Male 
C57BL/6 

30°C 

Male 
APP/PS1 

23°C 

Male 
APP/PS1 

30°C 

Female 
C57BL/6 

23°C 

Female 
C57BL/6 

30°C 

Female 
APP/PS1 

23°C 

Female 
APP/PS1  

30°C 

1 (°C) 36.5 ± 0.2 37.1 ± 0.2* 36.5 ± 0.2 37.1 ± 0.1** 36.7 ± 0.2 37.4 ± 0.2** 36.8 ± 0.2 37.1 ± 0.2 

2B, 2C (AUC) 10389 ± 394 8834 ± 507* 11432 ± 524 11137 ± 531 9163 ± 268 6662 ± 416**** 10283 ± 817 8172 ± 369* 

2E, 2F (AUC) 8159 ± 519 8296 ± 904 8723 ± 744 7540 ± 1025 7607 ± 931 4786 ± 595* 6337 ± 1116 8541 ± 962 

2G (mg/dL) 176.1 ± 4.7 214.3 ± 9.9** 191.5 ± 10.8 174.2 ± 10.4 153.2 ± 5.3 148.3 ± 5.8 172.7 ± 10.0 162.6 ± 6.8 

2H (mg/dL) 138.4 ± 4.8 134.7 ± 5.9 130.8 ± 4.2 155.6 ± 7.9* 127.3 ± 5.7 128.3 ± 5.5 154.1 ± 10.7 131.7 ± 3.3 

3A (pM) 7.3 ± 0.7 4.4 ± 0.5** 7.9 ± 1.0 4.7 ± 0.7* 11.10 ± 1.9 9.8 ± 1.3 25.2 ± 8.6 10.2 ± 1.4 

3B (pM) 23.1 ± 2.5 12.0 ± 0.8** 30.3 ± 4.6 23.3 ± 2.7 15.7 ± 1.7 27.1 ± 1.6*** 27.88 ± 4.9 25.9 ± 4.0 

3C (µIU/mL) 564.5 ± 94.9 380.4 ± 83.5 536.9 ± 94.9 254.1 ± 52.6* 375.0 ± 92.4 370.9 ± 96.7 236.3 ± 43.8 385.7 ± 130.4 

3D (pg/mL) 86.1 ± 10.7 192.1 ± 42.9* 67.1 ± 10.1 140.9 ± 28.9* 119.7 ± 46.5 86.1 ± 12.1 135.5 ± 45.0 77.2 ± 7.5 

3E (pg/mL) 2218 ± 253 1197 ± 156** 2340 ± 154 1618 ± 149** 1776 ± 75 1521 ± 96 3400 ± 362 1683 ± 265** 

4A (RE) 1.0 ± 0.2 1.5 ± 0.2 1.0 ± 0.2 0.7 ± 0.1 1.0 ± 0.1 1.0 ± 0.2 1.0 ± 0.1 0.8 ± 0.1 

4B (RE) 1.0 ± 0.1 1.3 ± 0.2 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.6 ± 0.1** 1.0 ± 0.1 0.8 ± 0.1 

4C (RE) 1.0 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.3 ± 0.2 1.0 ± 0.1 1.3 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 

4D (RE) 1.0 ± 0.2 1.1 ± 0.2 1.0 ± 0.3 1.3 ± 0.3 1.0 ± 0.1 0.7 ± 0.2 1.0 ± 0.2 1.1 ± 0.1 

4E (RE) 1.0 ± 0.2 1.2 ± 0.2 1.0 ± 0.1 1.0 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.6 ± 0.1* 

4F (RE) 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.1 0.8 ± 0.1 1.0 ± 0.2 1.6 ± 0.1* 1.0 ± 0.2 0.6 ± 0.1* 

4G (RE) 1.0 ± 0.4 2.8 ± 0.9 1.0 ± 0.3 2.2 ± 0.7 1.0 ± 0.3 0.2 ± 0.1* 1.0 ± 0.1 2.2 ± 0.4* 

4H (RE) 1.0 ± 0.4 4.6 ± 1.5* 1.0 ± 0.3 1.4 ± 0.4 1.0 ± 0.3 1.1 ± 0.4 1.0 ± 0.4 1.1 ± 0.2 

4I (RE) 1.0 ± 0.3 0.6 ± 0.1 1.0 ± 0.1 1.5 ± 0.4 1.0 ± 0.3 0.4 ± 0.1* 1.0 ± 0.1 2.6 ± 0.5** 

4J (RE) 1.0 ± 0.4 2.2 ± 0.7 1.0 ± 0.2 1.6 ± 0.6 1.0 ± 0.2 0.3 ± 0.2* 1.0 ± 0.2 2.5 ± 0.4** 

4K (RE) 1.0 ± 0.4 2.7 ± 0.8 1.0 ± 0.3 2.3 ± 0.9 1.0 ± 0.3 0.2 ± 0.1* 1.0 ± 0.2 1.8 ± 0.3* 

4L (RE) 1.0 ± 0.2 0.4 ± 0.1* 1.0 ± 0.2 2.9 ± 1.6 1.0 ± 0.2 1.6 ± 0.5 1.0 ± 0.3 1.7 ± 0.6 

4M (RE) 1.0 ± 0.2 1.1 ± 0.2 1.0 ± 0.1 1.0 ± 0.3 1.0 ± 0.1 1.8 ± 0.1*** 1.0 ± 0.3 2.0 ± 0.5 

5B (entries) 2.0 ± 0.4 3.2 ± 0.4* 1.5 ± 0.4 2.0 ± 0.3 2.6 ± 0.5 2.9 ± 0.5 2.2 ± 0.4 0.9 ± 0.3* 

5C (s) 31.3 ± 5.9 15.3 ± 2.3* 33.7 ± 6.5 21.1 ± 5.4 19.4 ± 5.6 22.2 ± 4.7 17.8 ± 4.1 42.0 ± 7.3** 

5D (entries) 4.60 ± 0.6 6.2 ± 0.4* 3.2 ± 0.7 5.2 ± 0.6* 5.9 ± 0.7 7.4 ± 0.7 4.1 ± 0.4 3.4 ± 0.6 

5E (s) 12.4 ± 3.0 9.4 ± 1.4 22.1 ± 6.0 6.3 ± 1.7* 7.7 ± 1.5 11.4 ± 2.6 7.3 ± 1.5 17.7 ± 3.9* 

5F (m/s) 0.17 ± 0.01 0.19 ± 0.01* 0.17 ± 0.01 0.19 ± 0.01 0.20 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 

6 (pmol/L) 15.6 ± 3.2 7.4 ± 2.8 482.4 ± 58.2 224.5 ± 65.3* 9.3 ± 1.5 6.2 ± 2.8 294.3 ± 39.5 344.8 ± 53.6 

Values represent mean ± SEM rounded to the nearest whole number, tenth, or hundredth. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
indicate statistically significant differences from 23°C sex- and genotype-matched controls. Abbreviations: AUC: area under the curve; RE: 
relative expression. 

 

Thermotherapeutic effects on blood glucose 

 

Repeated exposure (3–6 times per week) to 

thermotherapy for 30–60 minutes positively modulates 

insulin sensitivity and glucose tolerance in people with 

metabolic dysfunction [21, 22]. Previous research 

shows APP/PS1 mice have reduced insulin sensitivity 

and glucose tolerance compared with age-matched 

littermate controls [15, 20, 23]. To determine 

thermotherapeutic effects on blood glucose regulation, 

we performed an insulin and glucose tolerance tests (ITT 
and GTT, respectively) after six months of chronic 

thermotherapy treatment. During the ITT, an 

intraperitoneal (ip) injection of insulin decreased blood 

glucose levels to a greater extent in all groups receiving 

thermotherapy, except for male APP/PS1, when 

compared with genotype and sex-matched ambient 

temperature controls (Figure 2A). The ITT area under the 

curve (AUC) provides an overall indication of insulin 

sensitivity. Thermotherapy improved insulin sensitivity 

in all groups apart from male APP/PS1 mice (Figure 2B, 

2C). The GTT provides an indication of the endogenous 

uptake of blood sugar into tissue for energy utilization or 

storage. Thermotherapy exposed male APP/PS1 and 

female C57BL/6 mice receiving thermotherapy had 
lower blood glucose levels 15 minutes after an ip 

injection of glucose than their corresponding ambient 

temperature controls (Figure 2D). No time point 
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differences were observed in male C57BL/6 or female 

APP/PS1 mice. The GTT AUC provides an indication 

of overall glucose tolerance which was only improved 

in female C57BL/6 mice receiving thermotherapy 

(Figure 2E, 2F). Thermotherapy worsened fed blood 

glucose in male C57BL/6 (Figure 2G) and fasting blood 

glucose in male APP/PS1 mice (Figure 2H) despite their 

improved insulin sensitivity and glucose tolerance, 

respectively. 

Effects of glucose regulating plasma peptides after 

chronic thermotherapy 

 

Circulating levels of plasma peptides and hormones that 

modulate blood glucose levels were measured by 

multiplex assays. Glucagon release from the pancreas 

promotes liver glycogenolysis thereby increasing 

circulating blood glucose levels. Chronic thermotherapy 

reduced plasma glucagon levels in all groups except 

 

 
 

Figure 2. Blood glucose changes after thermotherapy. Percent change of blood glucose levels after an ip injection of 1 IU/kg bw of 

insulin at t = 0 minutes (A). The AUC was calculated for the duration of the ITT and compared temperature effects in male (B) and female 
(C) mice. Percent change of blood glucose levels after an ip injection of 2 g/kg bw of glucose at t = 0 minutes (D). The AUC was calculated 
for both male (E) and female (F) mice. Fed (G) and fasting (H) blood glucose levels were determined prior to ip injection of insulin and 
glucose, respectively. The number of animals is inset on each bar graph. A two-way ANOVA factor analysis with Sidak’s post hoc was used 
to determine significant blood glucose changes due to thermotherapy across time intervals. A two-tailed t-test was used to determine 
blood glucose changes within a genotype and sex. *p < 0.05, **p < 0.01, ****p < 0.0001. 
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female C57BL/6 mice (Figure 3A). Glucagon-like 

peptide 1 (GLP1) release from the gastrointestinal tract 

reduces circulating glucose levels by stimulating insulin 

release, suppressing glucagon secretion, and promoting 

satiety. Thermotherapeutic differences in plasma GLP1 

levels were only observed in C57BL/6 mice with 

decreased levels in males and an increase observed in 

females (Figure 3B). Despite the changes observed in 

GLP1, thermotherapy did not affect plasma insulin in 

C57BL/6 mice, but a decrease was observed in male 

APP/PS1 mice (Figure 3C). Fibroblast growth factor 21 

(FGF21) regulates metabolism and is important for 

thermogenic recruitment of white adipose tissue (WAT). 

Plasma FGF21 was elevated in male C57BL/6 and 

APP/PS1 mice housed at 30°C, but no differences were 

observed in females receiving thermotherapy (Figure 

3D). B-cell activating factor (BAFF) is a member of the 

tumor necrosis factor (TNF) ligand family that 

regulates adipose tissue inflammation and impairment of 

insulin-receptor signaling [24]. Chronic thermotherapy 

treatment reduced plasma BAFF in both genotypes 

of male mice as well as female APP/PS1 mice, 

similar to plasma glucagon observations (Figure 3E). 

Taken together, these results show that six months of 

passive thermotherapy altered the plasma profile of 

peptides and hormones in a manner consistent with 

improved insulin sensitivity and glucose tolerance in a 

sex-dependent manner. 

 

Hepatic glucose metabolizing genes 

 

The liver plays a key role in maintaining an easily 

accessible supply of energy, primarily in the form of 

glucose and glycogen. Insulin receptor (InsR) activation 

leads to downstream signal transduction through 

phosphatidylinositol 3-kinase (PI3K)/Akt that induces 

translocation of glucose transporters to the cell surface, 

thereby facilitating glucose uptake. Once in the liver, 

glucose undergoes phosphorylation by glucokinase 

(Gck) to form glucose-6-phosphate, which can be 

utilized in either glycolysis or glycogenesis. 

Conversely, glucose-6-phosphatase (G6PC) catalyzes 

the hydrolysis of glucose-6-phosphate back to glucose. 

Chronic thermotherapy affected genes associated with 

liver glucose uptake in female C57BL/6 mice. InsR and 

Akt expression were similar, but PI3K relative gene

 

 
 

Figure 3. Plasma concentrations of glucose regulating hormones. Plasma expression levels of glucagon (A), glucagon-like peptide 1 

(GLP1; B), insulin (C), fibroblast growth factor 21 (FGF21; D), and B-cell activating factor (BAFF; E) as detected by multiplex assay. A two-
tailed t-test was used to determine plasma concentration changes within a genotype and sex. *p < 0.05, **p < 0.01, ***p < 0.001. 
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expression was elevated in after thermotherapy treatment 

(Figure 4A–4C). This increased expression accounts for 

the improved insulin sensitivity seen in the female 

C57BL/6 mice as previously discussed (Figure 2A, 2C). 

No difference in Glut2 expression were observed (Figure 

4D), but GCK and G6PC were both decreased in female 

APP/PS1 mice receiving thermotherapy treatment 

(Figure 4E, 4F). Conversely, thermotherapy increased 

 

 
 

Figure 4. Hepatic, perigonadal white adipose tissue, and skeletal muscle mRNA expression. Hepatic mRNA expression of insulin 

receptor (INSR; A), phosphatidylinositol 3-kinase (PI3K; B), AKT1 (C), glucose transporter 2 (GLUT2; D), glucokinase (GCK; E), and glucose 6-
phosphatase (G6PC; F) relative to B2M. Perigonadal WAT mRNA expression changes of uncoupling protein 1 (UCP1; G), PGC-1α (PPARGC1A; 
H), INSR (I), tumor necrosis factor α (TNFA; J), and interleukin 6 (IL6; K) relative to B2M. GLUT4 (L) and 1 (M) mRNA expression relative to 
GAPDH in skeletal muscle. A two-tailed t-test was used to determine mRNA expression fold changes within a genotype and sex. The 
number of animals is either inset or above the error bars on each bar graph. *p < 0.05, **p < 0.01, ***p < 0.001. 
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G6PC expression in female C57BL/6 mice. This 

variation in G6PC between female C57BL/6 and 

APP/PS1 mice likely contributes to their divergent 

responses during the GTT. Following thermotherapy 

treatment, glucose tolerance was enhanced in C57BL/6, 

but diminished in APP/PS1 mice. 

 

Perigonadal white adipose tissue mRNA expression 

 

Visceral adipose tissue is hormonally active and 

regulates systemic metabolism by acting as an energy 

reservoir and through secretion of adipokines and 

cytokines. Excessive accumulation of this adipose 

depot causes insulin insensitivity and release of 

proinflammatory cytokines resulting in metabolic 

dysregulation. Localized thermotherapy has been 

shown to induce browning of WAT through increased 

expression of uncoupling protein (UCP) 1 [25]. UCP1 

is present in brown and beige adipose tissue and is 

responsible for dissipating the mitochondrial electron 

transport gradient to generate heat instead of ATP 

synthesis. Chronic thermotherapy increased 

perigonadal (pg) WAT UCP1 expression in all groups 

except female C57BL/6 mice, where a decrease was 

observed (Figure 4G). Peroxisome proliferator-

activated receptor-gamma coactivator (PGC)-1α 

regulates expression of UCP1 along with FGF21 

signaling. PGC-1α expression was upregulated in male 

C57BL/6 mice after thermotherapy treatment (Figure 

4H). This increased gene expression coupled with 

FGF21 plasma concentrations (Figure 3D) indicates 

that thermotherapy increased gene expression pathways 

implicated in the browning of adipose tissue. 

Thermotherapy modulated InsR expression in female 

mice, but in opposing manners, with reduced 

expression in C57BL/6 and an increase observed in 

APP/PS1 mice (Figure 4I). This would account for the 

improved insulin sensitivity in female APP/PS1, but 

not sex-matched C57BL/6 mice. Proinflammatory 

cytokines systemically impair glucose homeostasis. 

Similar to InsR expression, TNFα and Interleukin (IL)-

6 mRNA levels were divergent in female mice after 

thermotherapy treatment. In females, expression of 

both proinflammatory cytokines were decreased in 

pgWAT of C57BL/6, but increased in APP/PS1 mice 

(Figure 4J, 4K). The increased release of pro-

inflammatory cytokines from pgWAT in female 

APP/PS1 likely contributes to the worsening of glucose 

tolerance discussed previously (Figure 2D, 2F). 

 

Skeletal muscle glucose transporter expression 

 

Skeletal muscle is the predominant tissue responsible 
for blood glucose homeostasis mediated through 

insulin-dependent (Glut4) and independent (Glut1) 

mechanisms. Under basal conditions, Glut1 is located 

on the plasma membrane, whereas Glut4 resides 

intracellularly. In response to insulin or exercise, Glut4 

is translocated to the plasma membrane and is crucial 

for systemic glucose homeostasis. Glut1 can also 

enhance basal glucose uptake in skeletal muscle [26]. 

Thermotherapy showed opposing effects on Glut4 

expression in male mice with decreases in C57BL/6 but 

increases in APP/PS1 mice (Figure 4L), while Glut1 

expression was similar in both genotypes (Figure 4M). 

In male APP/PS1 mice, Glut4 expression levels were 

elevated (although not significantly) that could 

contribute to improving their glucose tolerance (Figure 

2D). Whereas in male C57BL/6 mice, decreased Glut4 

expression after thermotherapy does not affect glucose 

tolerance despite improvements in insulin signaling. In 

females, thermotherapy did not alter Glut4 but increased 

expression of Glut1 in C57BL/6 mice (Figure 4L, 4M). 

This enhanced Glut1 expression in female C57BL/6 

would account for the improvement in glucose tolerance 

discussed earlier (Figure 2D), particularly at the earliest 

time point. 

 

Thermotherapy alters spatial learning and memory 

in a sexually dimorphic manner 

 

Spatial learning and memory recall is impaired in 

APP/PS1 mice by 12 months of age [15]. To determine 

if thermotherapy ameliorates these cognitive deficits, 

we tested mice using the Morris water maze (MWM) 

spatial navigation paradigm. During the training 

sessions, platform latency was decreased in male 

C57BL/6 mice exposed to 30°C (Figure 5A). All other 

groups had a similar learning profile. During the probe 

challenge, the number of platform entries (Figure 5B) 

were increased while latency to first platform entry 

(Figure 5C) was decreased in male C57BL/6 mice 

after thermotherapy. Female APP/PS1 mice exhibited 

a decrease in the number of platform entries and an 

increase in platform latency for first entry (Figure 5B, 

5C). When examining an area slightly larger than the 

former location of the hidden escape platform, the 

number of annulus 40 entries (Figure 5D) were 

increased in both male C57BL/6 and APP/PS1 mice 

receiving thermotherapy. This also reduced the latency 

to first annulus 40 entry in male APP/PS1 mice 

(Figure 5E), but an increased latency in female 

APP/PS1 mice was observed. Thermotherapy 

increased the swimming speed in male C57BL/6 mice 

only (Figure 5F) that may be indicative of skeletal 

muscle enhancements due to the warmer environment 

[27]. This faster swimming along with an improved 

learning curve in male C57BL/6 mice accounts for 

their improved memory recall. However, in AD mice, 
these performance issues were not observed. 

Thermotherapy has sexually dimorphic cognitive 

effects regardless of AD genotype. 
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Thermotherapy reduces hippocampal soluble Aβ42 

concentration in male APP/PS1 mice 

 

Soluble Aβ42 is considered to be a neurotoxic species 

and its aggregation of monomers, oligomers, and 

protofibrils are associated with cognitive decline in AD 

[28]. Transgenic APP/PS1 mice overexpress APP and 

PS1 resulting in preferential cleavage of the 42 base 

pair Aβ peptide. A soluble Aβ42 specific ELISA was 

used to measure hippocampal concentrations in 

 

 
 

Figure 5. Sexually dimorphic spatial navigation responses to thermotherapy in APP/PS1 mice. Average latency to the platform 

during the five MWM training sessions (A). A two-way ANOVA with Sidak’s post hoc was used to determine significant time differences due 
to thermotherapy across training days. The number of platform entries (B), latency to first platform entry (C), number of annulus 40 entries 
(D), latency to first annulus 40 entry (E), and swimming speed (F) during the delayed MWM probe challenge. A two-tailed t-test was used to 
determine thermotherapy effects on probe challenge parameters within a sex and genotype. The number of animals is inset on each bar 
graph. *p < 0.05, **p < 0.01. 
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APP/PS1 and C57BL/6 mice, with the latter serving as a 

negative control (Figure 6). Thermotherapy reduced the 

hippocampal Aβ42 concentration in APP/PS1 male 

mice, but no effects were observed in females of either 

genotype. This reduction of Aβ42 in male APP/PS1 mice 

likely contributes to the improved spatial memory 

recall. 

 

DISCUSSION 
 

The age of the mice for this study was chosen based on 

the pathology and cognitive aspects of disease 

progression. Amyloid accumulation and subtle 

cognitive impairments are observed at 6 months of age 

and rapidly progress to 12 months in APP/PS1 mice. 

This time frame translationally corresponds to mild 

cognitive impairment which is the opportune window to 

initiate disease-modifying treatment to prevent 

conversion to AD. Various biological and environ-

mental factors contribute to the onset and progression of 

AD, leading to the development of cognitive deficits as 

well as metabolic and physical decline. To improve the 

overall quality of life for individuals with AD, effective 

treatments should target a range of physiological 

changes beyond cognitive impairments. Passive thermo-

therapy positively modulates multiple physiological 

parameters and represents a nonpharmacological 

approach for potential disease modifying treatment. 

Polypharmacy is common among aging populations, 

and nonpharmacological interventions help mitigate 

adverse drug reactions. 

Despite passive thermotherapy increasing Tc in both 

sexes of C57BL/6 mice, we observed some notable 

differences between the sexes. Insulin sensitivity was 

improved in both sexes, but to a much larger degree in 

the females. Improved glucose tolerance was only 

observed in female C57BL/6 mice. Thermotherapy 

significantly influenced plasma hormone levels in male 

C57BL/6 mice, while mRNA expression levels were 

more affected in females. In male mice, plasma 

glucagon, GLP1, and BAFF levels decreased, whereas 

FGF21 levels increased. In female mice, only GLP1 

levels showed an increase. The increased expression of 

hepatic PI3K, combined with the decreased expression 

of INSR in pgWAT, likely contributed to the improved 

insulin sensitivity observed in female C57BL/6 mice 

following thermotherapy treatment. Additionally, we 

observed reduced expression levels of proinflammatory 

cytokines in the pgWAT of these female mice. Finally, 

thermotherapy improved spatial learning and memory 

only in male C57BL/6 mice, but this may be attributed 

to improved muscle performance since swimming speed 

was faster in these mice. 

 

Our present study shows that passive thermotherapy 

improved either glucose tolerance or insulin sensitivity 

in all sexes and genotypes tested. The underlying 

processes responsible for these effects are diverse and 

sexually dimorphic. In males, glucose regulation was 

influenced predominantly by plasma hormone signaling 

and skeletal muscle Glut4 expression, whereas in 

females, this was modulated at the level of individual

 

 

 
Figure 6. Thermotherapy decreases hippocampal soluble Aβ42 in male mice. Average concentration of hippocampal soluble Aβ42 
was determined by ELISA in male and female mice. C57BL/6 mice were used as a negative control as denoted by the segmented y-axis. A 
two-tailed t-test was used to determine thermotherapy effects within a sex and genotype. The number of animals is either inset or above 
the error bars on each bar graph. *p < 0.05. 
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tissues. Reduced plasma glucagon levels decrease 

glycogenolysis, improved insulin sensitivity accom-

panies lower BAFF concentrations, and skeletal muscle 

Glut4 expression regulates uptake of circulating blood 

glucose levels. An increase in plasma FGF21 and 

elevated gene expression of UCP1 and PGC-1α in 

pgWAT indicates thermotherapy induced WAT 

browning that improved metabolism, similar to previous 

observations [25]. Female mice receiving thermo-

therapy treatment showed significantly enhanced 

responses to insulin that were mediated by changes in 

plasma hormones and pgWAT genes. In female 

C57BL/6 mice, thermotherapy enhanced insulin 

signaling and lowered blood glucose levels. This was 

accompanied by elevated plasma concentrations of 

GLP1 and hepatic PI3K gene expression. In 

thermotherapy treated female APP/PS1 mice, decreased 

BAFF plasma concentrations and increased pgWAT 

InsR expression would also improve their response to 

insulin. However, the elevated expression of 

proinflammatory cytokines in pgWAT after thermo-

therapy would cause slower glucose clearance in these 

mice. 

 

Despite the metabolic improvements observed in both 

sexes after thermotherapy, cognitive improvements 

were only observed in male mice. Soluble Aβ42, rather 

than insoluble fibrils and plaques, is considered 

neurotoxic due to its ability to spread throughout the 

brain and affect energy metabolism, neurotransmission, 

and inflammation. This eventually causes synapse and 

cell loss that is a contributing factor to cognitive 

decline. Soluble Aβ42 was reduced in males of both 

genotypes, consistent with their improved spatial 

navigation. Although thermotherapy did not affect 

soluble Aβ42 levels in female APP/PS1 mice, their 

memory recall was significantly decreased. This could 

be attributed to the elevated proinflammatory cytokine 

gene expression observed peripherally. In addition to 

affecting glucose tolerance, TNFα and IL-6 can readily 

cross the blood brain barrier and exacerbate the 

neuroinflammation already caused by plaque formation. 

 

Both passive cooling and thermotherapy have been 

explored in different models of AD and have shown 

varying results. Acute and chronic passive cooling 

negatively affected AD pathology and cognition in the 

3xTg [16] and the APP/PS1 [15] models of AD, 

respectively. In the 3xTg model, repeated bouts of 

passive cooling reduced tau phosphorylation, but had no 

effect on amyloid pathology. The cognitive implications 

of these findings were not determined [29]. 

Thermotherapy reduced soluble Aβ42 [16] and tau 
phosphorylation [30] while improving cognitive 

performance in the 3xTg mice, which is similar to the 

male APP/PS1 mice assayed in the present study. 

Unlike males, chronic thermotherapy in female 

APP/PS1 mice worsened cognitive performance similar 

to findings in Tg2576 mice [31]. 

 

In our present study, the APP/PS1 female mice were the 

only group that did not experience an increase in Tc 

after thermotherapy and, coincidentally, exhibited 

poorer performance on the MWM paradigm compared 

with normothermic controls matched for genotype and 

sex. Despite Tc modulation by estradiol and 

progesterone [32], the absence of a response is not 

solely attributed to sex hormones, as thermotherapy 

increased Tc in female C57BL/6 mice. In mice, 

thermoregulatory sex differences have not been fully 

elucidated, but females prefer warmer environments 

than males regardless of gonadal factors [32] despite 

having higher Tc [33]. This suggests the differential 

responses we observed in the present study were not 

driven by sex hormones, but rather Aβ42 accumulation 

and aggregation. Further research is needed to 

determine how this accumulation might affect 

hypothalamic preoptic area modulation of Tc. 

 

Humans and other mammals are homeothermic, able to 

maintain a stable Tc through their metabolic activity, 

regardless of external environmental influences. Most 

people in developed nations spend a majority of their 

time residing in temperature-controlled environments 

that are optimized for thermal comfort, but minimize 

thermogenesis [34]. This coupled with the increasingly 

sedentary nature of work and life reduces activity-

related heat production resulting in thermostasis [35]. 

Accordingly, exposure to thermal extremes has gained 

scientific interest for its numerous physiological 

benefits that could either reduce risk factors associated 

with AD onset or be a treatment for disease progression 

[17]. Japanese ofuro and Scandinavian sauna bathing 

has been used for centuries with the latter associated 

with reduced risk of dementia and AD [36]. Studies 

demonstrate that exercise and passive heating have 

comparable beneficial physiological effects [37]. 

Hence, passive thermotherapy would be a preferable 

alternative to exercise, especially in elderly and frail 

individuals. 

 

A couple of limitations should be considered when 

interpreting the findings of this study. Protein levels 

rather than gene expression would provide a more 

causal mechanistic underpinning to the observed 

metabolic differences that were reported. In particular, 

mRNA expression does not infer recruitment of glucose 

transporters to the plasma surface and this analysis 

would be a better measure of changes in glucose 
tolerance. Finally, APP/PS1 females undergo 

reproductive senescence at earlier ages than C57BL/6 

mice which could influence glucose metabolism and 
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cognitive performance. To avoid these cofounds, we 

analyzed within genotype treatment comparisons. 

 

Our present research adds to a growing body of 

literature highlighting the benefits of passive 

thermotherapy to modulate AD progression and 

cognition in male, but not female mice, despite 

observing greater metabolic effects in the latter. While 

these sexually dimorphic responses have not been fully 

elucidated, further research is needed to improve the 

translational applications, such as investigating the 

duration of thermotherapy treatment and determining if 

similar effects are observed regardless of disease 

severity or pathological progression. Both of these 

factors are ongoing research efforts in our laboratory. 

The metabolic benefits highlighted in the present study 

also have translatable implications to other research 

areas such as obesity, diabetes, or metabolic syndrome. 

Finally, thermotherapy can be applied without causing 

drug-drug interactions and could replace the health 

benefits of exercise in frailer individuals. 

 

METHODS 
 

Animals 

 

Protocols for animal use were approved by the 

Institutional Animal Care and Use Committee at 

Southern Illinois University School of Medicine 

(Protocol #2022-055), which is accredited by the 

Association for Assessment and Accreditation of 

Laboratory Animal Care. Male and female APP/PS1 

and littermate control C57BL/6 mice used for this study 

were bred and maintained in our animal colony and 

originated from founder C57BL/6J (RRID: 

IMSR_JAX:000664) and APP/PS1 (RRID: 

MMRRC_034832-JAX) mice from Jackson Laboratory 

(Bar Harbor, ME, USA). A 5 mm tail tip was sent to 

TransnetYX®, Inc (Cordova, TN, USA) to confirm 

genotypes. Mice were group-housed according to sex 

and genotype on a 12:12 hour light/dark cycle, and 

laboratory rodent diet (LabDiet, 5001) and water were 

available ad libitum. The in vivo assays were performed 

in the same order (ITT, GTT, MWM) for all mice with 

a minimum of one week apart to limit effects of stress. 

One week post cognitive assessment, mice were deeply 

anesthetized with isoflurane and a cardiac puncture for 

blood chemistry analysis was performed. Immediately 

following, mice were euthanized by decapitation. 

Tissues were extracted and stored at -80°C until 

processing. 

 

Chemicals 

 

Unless otherwise noted, all chemicals were prepared 

and stored according to manufacturer recommendations. 

Thermotherapy 

 

From 6 to 12 months of age, mouse cages were placed 

into an environmental chamber (Powers Scientific Cat: 

RIS33SD) maintained at 30 ± 1°C located within the 

same animal facility room. Mice were only removed 

from this chamber for cage cleanings. A separate cohort 

of age- and sex-matched C57BL/6 and APP/PS1 mice 

were maintained at a standard animal room ambient 

temperature (23 ± 1°C) and used as a within genotype 

temperature control. 

 

Core body temperature measurements 

 

A separate cohort of male and female C57BL/6 and 

APP/PS1 mice were maintained at standard ambient 

temperature from birth until 11 months of age. A 

rodent thermometer with rectal probe (TK8851; 

BioSebLab) was used to obtain Tc when mice were 11 

months old. These mice were then transferred to 

environmental chambers (Powers Scientific Cat: 

RIS33SD) maintained at 30°C until 12 months of age 

(1 month chronic treatment). Mice were transferred to a 

separate room within our animal facility maintained at 

30°C to assess changes in Tc after one month of 

chronic exposure. 

 

Intraperitoneal (ip) insulin tolerance test (ITT) and 

glucose tolerance test (GTT) 

 

To determine insulin sensitivity, an initial blood glucose 

measurement (time = 0) was taken from the tail vein of 

fed mice and measured using a Presto® glucometer 

(AgaMatrix, Salem, NH, USA) followed by ip injection 

of 1 IU/kg bw Humulin® R (Henry Schein, Melville, 

NY, USA: Cat: 1238578). To determine glucose 

tolerance, an initial blood glucose measurement was 

taken (time = 0) from fifteen hour fasted mice followed 

by an ip injection of 2 g of dextrose/kg bw (Thermo 

Fisher Scientific Cat: D15). Following either injection, 

blood glucose levels were measured sequentially at 15, 

30, 45, 60, and 120 min [20]. 

 

Morris water maze (MWM) training and probe 

challenge 

 

At approximately 12 months of age, mice underwent 

cognitive assessment using the MWM spatial learning 

and memory recall paradigm, during which mice are 

trained to utilize visual cues to repeatedly swim to a 

static, submerged hidden platform. The MWM 

paradigm consisted of 5 consecutive learning days 

with three, 90-sec trials/day and a minimum 20 minute 
inter-trial interval. During the delayed memory recall, 

the platform was removed and mice were given a 

single, 60 second probe challenge. The ANY-maze 
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Table 2. A list of forward and reverse mRNA primers. 

Gene Forward Reverse 

AKT1 5′-ATGAACGACGTAGCCATTGTG-3′ 5′-TTGTAGCCAATAAAGGTGCCA-3′ 

B2M 5′-AAGTATACTCACGCCACCCA-3′ 5′-AGGACCAGTCCTTGCTGAAG-3′ 

G6PC 5′-AGCTACATAGGAATTACGGGCAA-3′ CACAGTGGACGACATCCGAAA-3′ 

GAPDH 5′-AGGTCGGTGTGAACGGATTTG-3′ 5′-TGTAGACCATGTAGTTGAGGTCA-3′ 

GCK 5′-TGAGCCGGATGCAGAAGG-3′ 5′-GCAACATCTTTACACTGGCCT-3′ 

GLUT1 5′-TCAAACATGGAACCACCGCTA-3′ 5′-AAGAGGCCGACAGAGAAGGAA-3′ 

GLUT2 5′-TCAGAAGACAAGATCACCGGA-3′ 5′-GCTGGTGTGACTGTAAGTGGG-3′ 

GLUT4 5′-ACACTGGTCCTAGCTGTATTCT-3′ 5′-CCAGCCACGTTGCATTGTA-3′ 

IL6 5′-CTGCAAGAGACTTCCATCCAG-3′ 5′-AGTGGTATAGACAGGTCTGTTGG-3′ 

INSR 5′-CCTGGTTATCTTCGAGATGGTCC-3′ 5′-CCCCACATTCCTCGTTGTCA-3′ 

PI3K 5′-TAGCTGCATTGGAGCTCCTT-3′ 5′-TACGAACTGTGGGAGCAGAT-3′ 

PPARGC1A 5′-TATGGAGTGACATAGAGTGTGCT-3′ 5′-GTCGCTACACCACTTCAATCC-3′ 

TNFA 5′-CAGGCGGTGCCTATGTCTC-3′ 5′-CGATCACCCCGAAGTTCAGTAG-3′ 

UCP1 5′-AGGCTTCCAGTACCATTAGGT-3′ 5′-CTGAGTGAGGCAAAGCTGATTT-3′ 

Abbreviations: Akt1: serine/threonine kinase family; B2M: beta-2-microglobulin; G6PC: glucose 6-phosphatase; GAPDH; 
glyceraldehyde 3-phosphate dehydrogenase; Gck: glucokinase; Glut: glucose transporter; IL: interleukin; INSR: insulin 
receptor; PPARGC1A: peroxisome proliferator-activated receptor-gamma coactivator; PI3K: phosphatidylinositol 3-kinase; 
TNFA: tumor necrosis factor; UCP: uncoupling protein. 

 

video tracking system (Stoelting Co., Wood Dale, IL, 

USA; RRID:SCR_014289) was used to record 

navigational parameters and data analysis. The three 

trials for each training day were averaged for each 

mouse for analysis. Variables extracted from ANY-

maze and utilized for data analysis include platform 

entries and latency, annulus 40 entries and latency, and 

swimming speed. 

 

Blood chemistry 

 

A cardiac puncture was used to collect blood in EDTA 

coated tubes (Sarstedt Inc. Microvette CB 300, Newton, 

NC, USA) on wet ice until centrifugation at 1500 × g for 

10 min at 4°C. The plasma supernatant was collected 

and stored at −80°C until analysis with a multiplex assay 

kit (Meso Scale Discovery, Rockville, MD, USA) 

according to the manufacturer’s recommended protocols. 

 

RT-PCR 

 

RNA was extracted from tissue and quantified using a 

NanoDrop One spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA) according to our 

previously published protocols [15]. cDNA was 

synthesized using candidate primers (Integrated DNA 

Technologies; Table 2) and an iScript cDNA Synthesis 

Kit (Bio-Rad, Hercules, CA, USA). Relative mRNA 

expression was analyzed by quantitative RT-PCR using 

the QuantStudio PCR System (Applied Biosystems, 

Carlsbad, CA, USA) and SYBR Green MasterMix (Bio-

Rad). Beta-2-microglobulin (B2M) was used as the 

internal housekeeping gene for pgWAT and liver while 

GAPDH was used for skeletal muscle. 

 

Soluble Aβ42 determination 

 

The hippocampus from one hemisphere was dissected 

and stored at −80°C until tissue processing. Soluble 

Aβ42 concentrations were determined using the 

Human/Rat β amyloid ELISA kits (WAKO Chemicals; 

Cat: 292-64501) according to the manufacturer 

recommended protocols. 

 

Statistical analysis 

 

Prism software Version 10.2 (GraphPad Software, Inc., 

La Jolla, CA, USA; RRID:SCR_002798) was used for 

all statistical analyses. A two-way ANOVA was used to 

test for significance of temperature within a genotype 

for the ITT, GTT, and MWM learning assays. 

Temperature treatment differences within the same sex 

and genotype were determined using a two-tailed 

Student’s t-test for all remaining assays. Potential 

outliers were determined with a single Grubb’s test (α = 

0.05). Data are represented as mean ± SEM and 

significance was defined as p < 0.05. 

 

Abbreviations 
 

Aβ: amyloid-β; AD: Alzheimer’s disease; AUC: area 

under the curve; B2M: beta-2-microglobulin; BAFF: B-
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cell activating factor; FGF21: fibroblast growth factor 21; 

G6PC: glucose 6-phosphatase; Gck: glucokinase; GLP1: 

glucagon-like peptide 1; Glut: glucose transporter; GTT: 

glucose tolerance test; InsR: insulin receptor; ip: 

intraperitoneal; ITT: insulin tolerance test; MWM: Morris 

water maze; pg: perigonadal; PGC: peroxisome 

proliferator-activated receptor-gamma coactivator; PI3K: 

phosphatidylinositol 3-kinase; Tc: core body temperature; 

TNF: tumor necrosis factor; UCP: uncoupling protein; 

VAT: visceral adipose tissue; WAT: white adipose tissue. 
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