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INTRODUCTION 
 

The untimely passing of Dr. Mikhail ‘Misha’ 

Blagosklonny marked the loss of a pioneering 

scientist—and a valued colleague and friend—who 

reshaped oncology and geroscience [1–4]. Throughout 

his career, Blagosklonny authored over 270 

publications, served as an editor for Cell Cycle, 

Oncotarget and Aging (Albany NY), and advanced a 

more integrated view of cancer, cellular biology, and 

aging [1]. By bridging these fields, he reframed aging as 

a quasi-programmed process in which growth-

promoting pathways persist beyond their developmental 

purpose, thereby contributing to age-related diseases. 

His legacy rests on two major contributions: the 

Hyperfunction Theory of aging and his pioneering 

advocacy for rapamycin, an mTOR (mechanistic target 

of rapamycin) inhibitor, as a therapeutic intervention for 

extending lifespan. The Hyperfunction Theory 

represents a fundamental departure from traditional 

damage-based theories of aging. By framing aging as a 

quasi-programmatic process driven by the overactivity 

of growth-promoting pathways such as mTOR, 

Blagosklonny positioned his work as an alternative to 

damage accumulation models, which he critiqued as 

inadequate for explaining the underlying biology of 

aging. 

 

Blagosklonny’s 2006 proposal that rapamycin might 
serve as a “longevity drug” anticipated the 2009 

Interventions Testing Program (ITP) findings, which 

confirmed rapamycin’s capacity to extend lifespan in 
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ABSTRACT 
 

The untimely passing of Dr. Mikhail “Misha” Blagosklonny has left a lasting void in geroscience and oncology. 
This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his 
advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension. Contrary to 
traditional damage-centric models, the Hyperfunction Theory rejects damage accumulation as the primary 
driver of aging. Instead, it redefines aging as a quasi-programmed process driven by the persistent, excessive 
activity of growth-promoting pathways beyond their developmental roles, leading to age-related pathologies. 
We explore how Blagosklonny’s insights predict rapamycin’s ability to decelerate aging by modulating excessive 
mTOR signaling, supported by empirical evidence across multiple physiological systems, including immune, 
cardiovascular, cognitive, and oncologic health. His forward-thinking approach, advocating for the cautious 
clinical use of rapamycin and suggesting personalized, preventive, and combination therapy strategies, has 
catalyzed interest in translational geroscience. This review synthesizes Blagosklonny’s legacy, presenting 
rapamycin as a foundational pharmacological intervention with potential in managing age-related decline and 
extending healthspan, and underlines his impact in shifting aging research from theoretical frameworks to 
actionable interventions. Blagosklonny’s work remains an enduring inspiration, paving the way toward treating 
aging as a modifiable condition. 
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genetically diverse mice, even when administered late 

in life. This manuscript reviews Blagosklonny’s 

Hyperfunction Theory, focusing on its implications for 

rapamycin’s mechanism of action, potential in 

longevity, and his proposed framework for clinical 

application. 

 

Redefining aging: the Hyperfunction Theory 
 

Hyperfunction versus damage models 

 

Before Blagosklonny’s contributions, aging research 

was primarily guided by damage-centric theories, which 

propose that aging is driven by cumulative damage from 

stressors such as oxidative stress, protein aggregation, 

DNA degradation, and other factors [5–19]. These 

theories positioned aging as a process of gradual 

deterioration over time. 

 

Blagosklonny’s Hyperfunction Theory introduced a 

complementary perspective, proposing that aging is not 

only due to accumulated damage but also to the 

persistent activity of growth-promoting pathways, such 

as mTOR, beyond their developmental roles [20–22]. 

The Hyperfunction Theory posits that these growth 

pathways, which drive development and reproduction in 

early life, become deleterious when they remain active 

in later life, leading to cellular hypertrophy, hyper-

function, and senescence [21, 23–27]. Unlike damage-

based theories, which attribute aging to the gradual 

accumulation of molecular and cellular damage, the 

Hyperfunction Theory explicitly rejects this perspective 

as the primary explanation for aging [28, 29]. Instead,  

it proposes that persistent growth-promoting signals, 

such as mTOR, drive cellular and tissue dysfunction. 

Blagosklonny likened this to a “runaway car without 

brakes,” where damage occurs as a secondary 

consequence of unchecked growth signaling rather than 

as the root cause [25, 30]. 

 

Blagosklonny’s Hyperfunction Theory aligns with the 

concept of antagonistic pleiotropy, originally proposed 

by George C. Williams in 1957, which posits that genes 

beneficial in youth can contribute to aging later in life 

[31, 32]. Hyperfunctional pathways such as mTOR 

reflect this concept by supporting survival and 

reproductive success early on, while driving pathology 

as organisms age. By expanding on this idea, 

Blagosklonny integrated damage models with hyper-

function, suggesting that prolonged mTOR signaling 

exacerbates both cellular overactivity and the 

accumulation of molecular damage [22, 33]. This 

alignment underscores the evolutionary roots of aging, 

where pathways beneficial for growth and reproduction 

become maladaptive in later life. For instance, David 

Gems, a key contributor to theoretical and experimental 

studies of aging, has highlighted the role of mTOR 

signaling in promoting hypertrophy and fibrosis [34], 

which contribute to diseases such as atherosclerosis and 

cancer, and in aging C. elegans hermaphrodites, run-on 

physiological apoptosis becomes a pathogenic with time 

[35]. His perspective aligns with the Hyperfunction 

Theory, suggesting that these mechanisms represent a 

significant aspect of aging biology [20]. 

 

The Hyperfunction Theory vs. damage models: 

exchange with aubrey de grey 
 

While de Grey emphasizes that cellular damage is the 

principal driver of aging, Blagosklonny suggests that 

hyperfunction may underlie much of this damage, 

establishing a cycle where excessive growth signaling 

promotes metabolic byproducts that accumulate and 

cause cellular decline [6, 30]. 

 

Blagosklonny directly engaged with Aubrey de Grey, a 

proponent of damage-based theories, in a 2021 

exchange published in Rejuvenation Research. 

Blagosklonny emphasized that hyperfunction, not 

damage accumulation, underpins aging, arguing that 

Hyperfunction Theory explains why damage 

accumulates—not from aging but as a downstream 

byproduct of hyperactive signaling: 

 

“Hyperfunction of signaling pathways can occur 

without progressive changes of their activity. For 

example, when the same activity of growth-

promoting pathways remains unchanged in 

postdevelopment, it is a hyperfunction. By analogy, 

a car driving 65 mph on highway is not speeding 

(hyperfunction) but driving 65 mph on the driveway 

is. In the latter case, the car certainly will be 

damaged, but not by rusting (molecular damage), but 

by damage of its macroparts. Similarly, hyper-

function does not cause molecular damage, but 

causes organ damage. Thus, the brain is damaged by 

stroke, which can be a result of hypertension, which, 

in turn, is developed by hyperfunctional cells of 

multiple tissues. There is no place for molecular 

damage in this sequence of events…” 

 

In his rebuttal, de Grey argued that while the 

Hyperfunction Theory offers valuable insights, damage 

repair remains essential for addressing aging: 

 

“While hyperfunction undoubtedly contributes to 

aging, it cannot fully explain the accumulation of 

oxidative and genetic damage that impairs cellular 

function [30].” 
 

Blagosklonny further posited that while molecular 

damage accumulates, it does not necessarily constrain 
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lifespan under typical conditions; however, if 

interventions extend lifespan significantly, such damage 

may become more limiting [36]. This dialogue 

highlights the contrasting paradigms while reinforcing 

Blagosklonny’s central assertion that aging inter-

ventions should prioritize targeting hyperfunction at its 

source. 

 

Building on the Hyperfunction Theory, Blagosklonny 

proposed that targeting overactive growth pathways 

could mitigate aging and its associated diseases. This 

theoretical framework directly informs the exploration 

of rapamycin, an mTOR inhibitor, as a potential 

therapeutic agent. The Hyperfunction Theory, together 

with João Pedro de Magalhães’ related developmental 

model [37, 38] has inspired the emergence of an 

expanding suite of programmatic theories, en-

compassing hypofunction, costly programs, constraint 

theory, and adaptive death [39–44]. 

 

Predictive health benefits of rapamycin based 

on the Hyperfunction Theory 
 

Blagosklonny’s insights on cellular aging center 

around the concept that the transition from a quiescent 

(non-dividing) state to a senescent one—termed 

geroconversion—is driven by growth-promoting 

mediators, notably the mTOR (mechanistic target of 

rapamycin) pathway, particularly when cells encounter 

a block in the cell cycle [45]. Under normal 

circumstances, cells in quiescence remain inactive 

without progressing to senescence. However, when 

growth signals such as those from the mTOR pathway 

remain active in cells that can no longer divide, it 

results in an overactive cellular state that fosters aging 

and senescence via continued, maladaptive activity of 

growth-related pathways beyond their developmental 

roles [22]. This theory suggests that key molecular 

mechanisms, including the mTOR pathway, remain 

chronically overactive, thereby promoting cellular 

processes that, while beneficial in early life, contribute 

to age-related diseases as they persist. 

 

Rapamycin, an mTOR inhibitor, offers a promising 

therapeutic intervention by selectively modulating this 

excessive signaling, potentially decelerating the aging 

process. Blagosklonny proposed that if hyperfunction 

drives aging, then inhibiting these pathways with 

rapamycin should delay or mitigate multiple age-related 

conditions [22]. His predictions, derived from the 

Hyperfunction Theory, have been corroborated by 

numerous studies exploring rapamycin’s effects across 

several biological systems [22, 24, 25, 46, 47]. The 
following sections explore the health benefits of 

rapamycin as predicted by Blagosklonny and supported 

by empirical research. 

• Immune Function: According to the Hyperfunction 

Theory, mTOR hyperactivity contributes to immune 

dysfunction by promoting chronic inflammation. 

Blagosklonny hypothesized that mTOR inhibition 

would alleviate immune hyperfunction and 

rejuvenate immune responses. This prediction was 

confirmed in animal models [48–52], and 

subsequently by Joan Mannick and colleagues, who 

found that elderly patients treated with low-dose 

everolimus (a rapamycin analog) demonstrated 

improved vaccine efficacy and reduced infection 

rates [53–55]. Foundational work by Chen et al. 

(2009) demonstrated that rapamycin can restore 

hematopoietic stem cell (HSC) function in aged mice, 

enhancing adaptive immunity and effective responses 

to viral challenges [56]. More recently, Ando et al. 

(2023) showed that mTOR signaling plays a crucial 

role in regulating T cell exhaustion and the efficacy of 

PD-1-targeted immunotherapy, revealing the nuanced 

outcomes of mTOR inhibition depending on the phase 

of immune activation [57]. While not all findings 

have been consistent, initial evidence shows 

promising potential, marking this approach as an 

area of significant scientific interest [55, 58]. These 

results support Blagosklonny’s hypothesis that 

rapamycin can enhance immune function by 

moderating age-associated immune hyperactivity 

without compromising essential immune defenses. 

 

• Cardiovascular Health: Persistent mTOR activation 

is thought to contribute to hypertrophy and fibrosis 

in cardiovascular tissues, accelerating age-related 

arterial plaque buildup [59–61]. Blagosklonny 

proposed that mTOR inhibition could have 

protective cardiovascular effects [22, 62]. Research 

on companion dogs, including studies led by Matt 

Kaeberlein, has yielded promising evidence that 

rapamycin may reduce markers of cardiac aging and 

improve heart function [63]. These preliminary 

findings align with Blagosklonny’s theoretical 

predictions, though some variability in results 

suggests that further investigation is necessary to 

validate and deepen our understanding of these 

effects [63, 64]. These findings underscore 

rapamycin’s potential to support cardiovascular 

health, reducing the impact of age-related pathology 

and positioning mTOR inhibition as a therapeutic 

avenue in cardiology [60, 61, 65]. 

 

• Cognitive Function: Blagosklonny suggested that by 

reducing hyperfunction in neural cells, rapamycin 

could prevent neuroinflammation associated with 

neurodegenerative diseases [47, 62, 66]. He 
proposed that rapamycin might help mitigate the 

buildup of amyloid and tau proteins, hallmarks of 

Alzheimer’s disease. Studies in rodent models of 
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neurodegeneration have supported this prediction, 

showing that rapamycin delays cognitive decline, 

reduces neuroinflammation, and slows the 

accumulation of amyloid plaques [67–75]. Similarly, 

in Parkinson’s disease (PD) models, rapamycin 

mitigates neurodegeneration by inhibiting mTORC1 

activity, rescuing dopaminergic neuron loss and 

behavioral deficits [76]. King et al. (2008) 

demonstrated that rapamycin also inhibits the 

aggregation of misfolded proteins, such as 

polyglutamine and huntingtin, via a reduction in 

protein synthesis, independent of its effects on 

autophagy [77]. These findings validate the notion 

that mTOR inhibition protects cognitive function by 

reducing cellular hyperfunction and preserving 

neural health. 

 

• Cancer Prevention: A cornerstone of Blagosklonny’s 

Hyperfunction Theory is the overlap between aging 

and cancer, both driven by hyperactive growth 

pathways [22, 23, 46, 78–84]. Blagosklonny 

hypothesized that mTOR inhibition would reduce 

cancer risk by suppressing the excessive cellular 

signaling that fuels tumor development. Research 

has confirmed that rapamycin reduces tumor 

progression and pre-cancerous lesion growth, 

affirming his view that hyperfunction contributes to 

both aging and cancer [12, 78, 79, 85–92]. This 

reinforces rapamycin’s potential as a dual-action 

therapeutic, addressing cellular pathways that drive 

both age-related decline and carcinogenesis. 

 

Rapamycin has shown considerable potential for 

lifespan extension across diverse animal models, from 

invertebrates such as C. elegans [93] and D. 
melanogaster [93] to mammals, including mice, where 

it mitigates various aging-related phenotypes [80, 85, 

87, 88, 94–110]. In mammalian models, rapamycin has 

been associated with improvements in body 

composition, metabolic and physical function, and 

reduced incidence of aging-related pathologies such as 

sarcopenia, osteoarthritis, ovarian decline, and tendon 

stiffness. These effects extend across multiple 

physiological systems—circulatory, respiratory, 

digestive, musculoskeletal, endocrine, integumentary, 

reproductive, and oral health—as well as in the 

management of benign neoplasms and other age-

associated conditions [55, 64, 67, 97, 102, 103, 106, 

111–125]. Preliminary findings, presented by Adam 

Salmon at the American Aging Association 52nd 

Annual Conference (2024), further suggest rapamycin’s 

potential for lifespan extension in primates. Studies 

consistently report that rapamycin administration 

increases median and maximum lifespan [89, 95, 99, 

101, 102, 123, 126–128]. These findings have sparked 

considerable interest in rapamycin’s translatability to 

human aging, with preliminary data from human studies 

and clinical trials suggesting beneficial effects on age-

related biomarkers and immune function. Such results 

underscore rapamycin’s emerging role as a 

pharmacological intervention with broad potential in 

mitigating age-associated decline in humans. As 

research continues, there is increasing optimism that 

rapamycin may hold practical applications for human 

life extension and age-related disease prevention, 

validating Blagosklonny’s predictions within the 

framework of the Hyperfunction Theory. 

 

Clinical translation and future directions 
 

Pragmatic use: a balanced approach to rapamycin’s 

clinical application 

 

Blagosklonny was a strong advocate for rapamycin’s 

cautious use in clinical settings, arguing that extensive 

animal safety data and emerging human studies 

supported its potential benefits in promoting healthy 

aging. In his 2019 article, “Rapamycin for Longevity,” 

he proposed that delaying treatment until human 

lifespan studies are complete would defer possible 

benefits for individuals who could benefit today [126]. 

Blagosklonny’s view remains controversial, as many 

researchers, including those working in the field of 

geroscience, emphasize the importance of validating 

efficacy and safety in humans before recommending 

rapamycin for longevity purposes [129]. Nevertheless, 

Blagosklonny’s advocacy has catalyzed significant 

interest and momentum in aging research, sparking 

increased funding and studies into rapamycin’s 

applications [32, 58, 64, 71, 72, 95, 110, 120, 130–144]. 

By championing a “pragmatic use” approach, 

Blagosklonny has opened pathways for informed, 

personalized decision-making between patients and 

healthcare providers. This framework allows patients to 

weigh the potential benefits and risks of off-label 

rapamycin use, guided by ongoing research and medical 

supervision, while awaiting definitive evidence on 

lifespan extension effects in humans. 

 

While Blagosklonny advocated for rapamycin’s  

use based on its established safety profile when 

administered appropriately, he acknowledged dis-

cussions in the scientific community about potential 

side effects and the exploration of alternatives. Some 

researchers have proposed that developing TORC1-

specific inhibitors or utilizing alternative rapalogs like 

everolimus could mitigate rapamycin’s side effects, 

such as glucose intolerance and immunosuppression 

[119]. Studies by Lamming et al. (2013) suggest that 

these rapalogs may offer similar therapeutic benefits 

with reduced adverse effects due to their different 

pharmacokinetic properties [119]. Additionally, 
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intermittent dosing regimens have been investigated as 

a strategy to minimize side effects while maintaining 

efficacy. For instance, Arriola Apelo et al. (2016) 

demonstrated that alternative rapamycin treatment 

schedules could mitigate impacts on glucose 

homeostasis and the immune system in mice [145]. 

However, Blagosklonny remained skeptical about the 

necessity of developing new rapalogs solely to 

overcome side effects he considered manageable with 

proper dosing of rapamycin [126, 146]. He emphasized 

that rapamycin, as a well-studied and FDA-approved 

drug, could be effectively utilized in anti-aging 

therapies through personalized dosing strategies without 

waiting for new drug developments. This perspective 

underscores the ongoing debate within the geroscience 

community regarding the optimal approach to mTOR 

inhibition in aging interventions. 

 

Blagosklonny’s framework for clinical application 

includes several principles designed to optimize the 

therapeutic potential of rapamycin: 

 

1. Personalized Dosing: Blagosklonny emphasized 

individualized dosing regimens, suggesting that 

optimal results can be achieved through low-dose or 

intermittent administration tailored to the patient’s 

tolerance and specific health profile. This  

approach aims to maximize rapamycin’s benefits 

while minimizing adverse effects [126, 127, 133, 

147–150]. 

 

2. Preventive Application: Blagosklonny advocated 

for the initiation of rapamycin treatment before 

the onset of age-related diseases, proposing that 

early intervention could maximize mTOR 

inhibition’s protective effects against age-

associated decline [22, 46, 66, 84, 126, 127, 133, 

147, 151–153]. 

 

3. Combination Therapy: To further enhance 

therapeutic outcomes, Blagosklonny proposed 

combining rapamycin with other agents, such as 

possibly metformin or ACE inhibitors, that may 

work synergistically with mTOR inhibition. This 

approach anticipated the current interest in multi-

targeted geroprotective strategies that address 

multiple aging pathways, reinforcing his forward-

looking vision for personalized anti-aging 

interventions [46, 62, 126, 154]. This approach is 

gaining traction [101, 142, 155–160]. 

 

Blagosklonny’s proposal for “longevity clinics” where 

patients could receive individualized anti-aging 
therapies reflects an innovative approach that is 

garnering significant interest in translational gero-

science and longevity medicine [126, 127, 133, 161–

170]. These clinics offer a potential framework for 

Blagosklonny’s vision, where cutting-edge gero-

protective treatments can be administered under 

specialized supervision, translating geroscience insights 

into practical healthcare solutions. 

 

CONCLUSION 
 

Mikhail Blagosklonny’s enduring legacy in 

geroscience 

 

Dr. Mikhail Blagosklonny’s contributions have 

fundamentally reshaped geroscience and oncology, 

offering a pioneering framework for understanding 

aging not merely as an accumulation of damage but as a 

quasi-programmed process. His Hyperfunction Theory, 

centered on the persistent activation of biological 

growth pathways like mTOR, presents aging as an 

extension of early-life growth signals that drive cellular 

and tissue decline over time. By advocating for 

rapamycin to mitigate these effects, Blagosklonny 

established a new paradigm that combines theoretical 

insights with actionable interventions. 

 

Ongoing clinical research into mTOR inhibitors  

for healthspan and lifespan extension reflects 

Blagosklonny’s impact, marking a shift in gero-

science towards treating aging as a modifiable 

condition. His vision has inspired a new wave of 

research focused on interventions that aim not only to 

extend life but to enhance its quality, underscoring his 

belief in the potential of translational geroscience. 

 

Blagosklonny’s Hyperfunction Theory offers a 

compelling alternative to traditional damage-based 

theories, presenting a novel framework for under-

standing the causes of aging. This contribution will 

undoubtedly be remembered in the coming decades  

and beyond as an innovative contribution to our 

theoretical grasp of the aging process and a foundation 

for exploring effective therapeutic approaches. 

Blagosklonny’s work leaves an enduring legacy, 

embodying the shift from viewing aging as an inevitable 

decline to treating it as a condition that science and 

medicine can manage. As a colleague and friend, 

Misha’s commitment to advancing geroscience remains 

a personal and professional inspiration. 
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