-9), independent of chronological age, even after adjusting for additional risk factors (p<5.4x10-4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5x10-43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality." name="description"> DNA methylation-based measures of biological age: meta-analysis predicting time to death - Figure f1 | Aging
Priority Research Paper Volume 8, Issue 9 pp 1844—1865

DNA methylation-based measures of biological age: meta-analysis predicting time to death

class="figure-viewer-img"

Figure 1. Epigenetic age acceleration in blood versus that in breast or saliva. A-D) Epigenetic age acceleration in healthy female breast tissue (y-axis) versus various measures of epigenetic age acceleration in blood: A) universal measure of age acceleration in blood, B) intrinsic epigenetic age acceleration based on the Horvath estimate of epigenetic age, C) extrinsic epigenetic age acceleration, D) intrinsic epigenetic age acceleration based on the Hannum estimate of epigenetic age. E-H) analogous plots for epigenetic age acceleration in saliva (y-axis) and E) AgeAccel, F) IEAA based on Horvath, G) EEAA, H) IEAA based on the Hannum estimate. The y-axis of each plot represents the universal measure of age acceleration defined as the raw residual resulting from regressing epigenetic age (based on Horvath) on chronological age.