
        
            
                
            
        

    
	Table of Contents

	Copyright © 2008‐2017 Impact Journals, LLC

	EDITORIAL BOARD

	Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human

	Abstract

	Introduction

	Results

	Effects of DR on total and visceral adipose mass

	Effects of DR on adipokines and DHEA

	Effects of DR on insulin, IGF-1, HOMA Index and IGBPs

	Effects of DR on inflammatory markers

	Discussion

	Materials and Methods

	Search strategy and included studies

	Data analysis

	Conflicts of Interest

	Funding

	References

	Deep biomarkers of aging are population-dependent

	Acknowledgments

	References

	Deep biomarkers of human aging: Application of deep neural networks to biomarker development

	Abstract

	Introduction

	Results

	Marker importance

	Top features

	Use case

	Discussion

	Materials and Methods

	Acknowledgements

	Funding

	Conflict of Interest Statement

	Supplementary Materials

	References

	Telomere length is a prognostic biomarker in elderly advanced ovarian cancer patients: a multicenter GINECO study

	Abstract

	Introduction

	Results

	An overall decrease in telomere length with age in the patient cohort used in this study

	Longer TL in patients that completed their treatment and exhibited a better tolerance

	Correlation between TL distribution and overall survival

	A tendency towards correlation between TL and geriatric vulnerability parameters

	Discussion

	Materials and Methods

	Study design

	Patient population

	Assessments

	Measurement of telomere length

	Statistical analyses

	Supplementary Materials

	Supplemental File

	Acknowledgements

	Funding

	Conflicts of Interest

	Footnote

	References

	Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts

	Abstract

	Introduction

	Results

	Cellular pathways affected by chemotherapy in stromal fibroblasts

	1 Metabolism

	2 Antioxidant response and stress-related pathways

	3 Myofibroblastic differentiation

	4 Autophagy and senescence

	5 Inflammation

	Differentially up-regulated proteins in taxol-treated fibroblasts correlate with recurrence, metastasis and poor cancer survival

	Discussion

	Proteomic map of the stromal catabolic state induced by chemotherapy

	Clinical implications of the catabolic stroma signature

	Materials and Methods

	Cell culture

	Chemotherapeutical agents

	Sulforhodamone B (SRB) assay

	Label-free quantitative proteomics

	Chemicals and sample preparation

	Protein digestion

	HILIC solid phase extraction (SPE) of peptides

	LC-MS/MS analysis

	Statistical analysis

	Ingenuity pathway analyses

	Graphs and correlation analyses

	Supplementary Materials

	Supplemental File

	Supplemental File

	Supplemental File

	Abbreviations

	Author Contributions

	Acknowledgements

	Funding

	Conflicts of Interest

	Footnotes

	References

	What biomarkers (if any) for precise medicine?

	References

	Biomarkers and subtypes of cancer

	References

	HGF-MET as a breast cancer biomarker

	References

	Methylated TRF2 associates with the nuclear matrix and serves as a potential biomarker for cellular senescence

	Abstract

	Introduction

	Results

	Methylated TRF2 is associated with nuclear matrix

	Methylated TRF2 exhibits nuclear staining that is predominantly not associated with human telomeres

	Replicative senescence induces altered nuclear staining of methylated TRF2

	Altered nuclear staining of methylated TRF2 is associated with the altered nuclear structure in senescent cells

	Overexpression of hTERT prevents the formation of senescence-induced altered nuclear staining of methylated TRF2

	Dysfunctional telomeres induce the formation of the altered nuclear staining of methylated TRF2

	DNA damage induces the formation of the altered nuclear staining of methylated TRF2 in an ATM-dependent manner

	Discussion

	Methods

	DNA constructs and antibodies

	Cell culture and retroviral infection

	Sequential extraction of nuclear matrix

	Immunofluorescence

	Telomere length analysis and senescence-associated β-galactosidase assays

	Statistical analysis

	Supplementary Materials

	Supplemental File

	Acknowledgements

	Conflicts of Interest

	References

	Plasma microRNA biomarkers for detection of mild cognitive impairment: Biomarker Validation Study

	Abstract

	Introduction

	Results

	Biomarker validation

	A role of miRNA normalizer

	Discussion

	Materials and Methods

	Plasma samples

	Plasma RNA extraction and qRT-PCR miRNA analysis

	Bioinformatics analysis and statistical methods

	Supplementary Materials

	Supplemental File

	Conflicts of Interest

	References

	Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues

	Abstract

	Introduction

	Results

	Discussion

	Methods

	Cells and inducible cellular systems

	Human samples and animal models

	SA-β-galactosidase Assay

	Lipofuscin staining protocol: Sudan Black B (SBB) staining

	Immunofluorescence

	Immunoblotting analysis

	Auto-fluorescence Detection of Lipofuscin

	Author Contributions

	Acknowledgements

	Conflicts of Interest

	References

	The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats

	Abstract

	Introduction

	Results

	Body weight

	The white blood cell analyses

	Serum GH levels

	Serum IGF-I levels

	Serum testosterone and DHEA levels

	Discussion

	Materials and Methods

	Animals and diet

	Hormone levels and the white blood cell counts

	Statistical analysis

	Acknowledgements

	Conflicts of Interest

	References

	Plasma microRNA biomarkers for detection of mild cognitive impairment

	Abstract

	Introduction

	Results

	Selection of miRNA for pilot study

	Feasibility study for differentiation of MCI and AD from Age-Matched Controls

	Analysis of normal brain aging with selected miRNA biomarker pairs

	Discussion

	Materials and Methods

	Plasma samples

	MCI and AD diagnosis

	Bioinformatics analysis and statistical methods

	Supplementary Materials

	Supplemental File

	Acknowledgements

	Conflicts of Interest

	References

	Circulatory miR-34a as an RNA-based, noninvasive biomarker for brain aging

	Abstract

	Introduction

	Results

	Expression levels of miRNAs in blood and brain samples of C57/B6 mice

	Inverse levels of expression between miR-34a and its target, SIRT1, in blood and brain during aging

	Expression of miRNA-34a and its target SIRT1 in brain tissue sections from middle and old age C57/B6 mice

	Levels of Bcl-2, another target of miR-34a, in blood and tissue samples of C57/B6 mice

	Age-dependent changes of levels of p53 and its acetylated form in blood and brain samples of C57/B6 mice

	Discussion

	Materials and Methods

	Animals and Tissue Collection

	Processing blood for PBMC and plasma fractions

	Determination of microRNA expression levels

	Isolation of Protein fraction from brain, PBMCs and plasma

	Immunoblotting for protein levels of SIRT1, Bcl2 and p53

	Localization of miR-34a distribution by in situ hybridization in brain

	Immunohistochemistry localization of SIRT1 distribution in brain

	Data Analysis for statistical significance

	Supplementary Materials

	S-Figure 1

	S-Figure 2

	S-Figure 3

	S-Figure 4

	S-Figure 5

	S-Table-1

	Acknowledgements

	References

	Recent developments in the use of γ -H2AX as a quantitative DNA double-strand break biomarker

	Abstract

	Background

	Radiation biodosimetry

	Drug biodosimeter

	Distant DNA damage and chronic inflammation

	Environmental genotoxicity and high-throughput assays

	Conclusions

	Acknowledgements

	References

	

	 

	

	 

	 

	 


Editorial and Publishing Office Aging (Albany NY)

	6666 E. Quaker Str., Suite 1B Orchard Park, NY 14127

	Phone: 1-800-922-0957, option 1

	Fax: 1-716-508-8254

	e-Fax: 1-716-608-1380

	 

	Submission

	Please submit your manuscript on-line at http://aging.msubmit.net

	 

	Editorial

	For editorial inquiries, please call us or email editors@impactaging.com

	 

	Production

	For questions related to preparation of your article for publication, please call us or email krasnova@impactaging.com

	 

	Indexing

	If you have questions about the indexing status of your paper, please email kurenova@impactaging.com

	 

	Printing

	Each issue or paper can be printed on demand. To make a printing request, please call us or email krasnova@impactaging.com

	 

	Billing/Payments

	If you have questions about billing/invoicing or would like to make a payment, please call us or email payment@impactaging.com

	 

	Publisher's Office

	Aging is published by Impact Journals, LLC

	To contact the Publisher’s Office, please email: publisher@impactjournals.com, visit www.impactjournals.com, or call 1-800-922-0957, option 5

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	Copyright © 2008‐2017 Impact Journals, LLC

	Impact Journals is a registered trademark of Impact Journals, LLC

	[image: Aging_Header_Facebook]

	EDITORIAL BOARD

	

	

	EDITORS-IN-CHIEF

	Jan Vijg - Albert Einstein College of M edicine, Bronx, NY, USA 

	David A. Sinclair - Harvard Medical School, Boston, MA, USA 

	Vera Gorbunova - University of Rochest er, Rochest er, NY, USA

	Judith Campisi - The Buck Institute for Research on Aging, Novato , CA, USA 

	Mikhail V. Blagosklonny - Roswell Park Cancer Institute,  Buffalo, NY,   USA

	

	

	EDITORIAL BOARD

	Frederick Alt - Harvard Medical School, Boston, MA, USA

	Vladimir Anisimov - PetrovInstitute of Oncology, St. Petersburg, Russia 

	Johan Auwerx - Ecole Polytechnique Federale de Lausanne, Switzerland 

	Andrzej Bartke - Southern Illinois University, Springfield, IL, USA

	Nir Barzilai - Albert Einstein College of Medicine, Bronx, NY, USA 

	Elizabeth H. Blackburn - University of California, San Francisco, CA, USA 

	Maria Blasco - Spanish National Cancer Center, Madrid, Spain

	Vilhelm A. Bohr - National Institute on Aging, NIH, Baltimore, MD, USA 

	William M. Bonner - National Cancer Institute, NIH, Bethesda, MD, USA 

	Robert M. Brosh, Jr. - National Institute on Aging, NIH, Baltimore, MD, USA

	Anne Brunet - Stanford University, Stan ford, CA, USA

	Rafael de Cabo - NIA, NIH, Baltimore, MD, USA

	Ronald A. DePinho - Dana-Farber Cancer Institute, Boston, M A, USA 

	Jan van Deursen - Mayo Clinic, Rochester, MN, USA

	Lawrence A. Donehower - Baylor College of Medicine, Houston, TX, USA

	Caleb E. Finch - University of Southern California, Los Angeles, CA, USA

	Toren Finkel - National Institutes of Health, Bethesda, MD, USA 

	Luigi Fontana - Washington   University, St. Louis, MO, USA

	Claudio Franceschi - University of Bologna, Bologna, Italy

	David Gems - Inst. of Healthy Ageing, Univ. College London, UK

	Myriam Gorospe - National Institute on Aging, NIH, Baltimore, MD, USA 

	Leonard Guarente - MIT, Cambridge, MA, USA

	Andrei Gudkov - Roswell Park Cancer Institute, Buffalo, NY, USA 

	Michael Hall - University of Basel, Basel, Switzer land

	Philip Hanawalt - Stanford University, CA, USA

	Nissim Hay - University of Illinois at Chicago, Chicago, IL, USA 

	Siegfried Hekimi - McGill University, Montreal, Canada

	Stephen L. Helfand - Brown University, Providence, RI, USA

	Jan H.J. Hoeijmakers - Erasmus MC, Rotterdam, The Nether lands

	John 0. Holloszy - Washington University, St. Louis, MO, USA 

	Stephen P. Jackson - University of Cambridge, Cambridge, UK

	Heinrich Jasper - The Buck Institute for Research on Aging, Novato, CA, USA 

	Pankaj Kapahi - The Buck Institute for Research on Aging, Novato, CA, USA 

	Jan Karlseder - The Salk Institute, La Jolla, CA, USA

	Cynthia Kenyon - University of California San Francisco, San Francisco, CA, USA 

	James L. Kirkland - Mayo Clinic, Rochester, MN, USA

	Guido Kroemer - INSERM, Paris, France

	Titia de Lange - Rockefeller University, New York, NY, USA

	Arnold Levine - The Institute for Advanced Study, Princeton, NJ, USA 

	Michael P. Lisanti - University of Salford, Salford, UK

	Lawrence A. Loeb - University of Washington, Seattle, WA, USA

	Valter Longo - University of Southern California, Los Angeles, CA, USA 

	Gerry Melino - University of Rome, Rome, Italy

	Simon Melov - The Buck Institute for Research on Aging, Novato, CA, USA 

	Alexey Moskalev - Komi Science Center of RAS, Syktyvkar, Russia 

	Masashi Narita - University of Cambridge, Cambridge, UK

	Andre Nussenzweig - National Cancer Institute, NIH, Bethesda, MD, USA 

	William C. Orr - Southern Methodist University, Dallas, TX, USA

	Daniel S. Peeper - The Netherlands Cancer Institute, Amsterdam, The Netherlands 

	Thomas Rando - Stanford University School of Medicine, Stanford, CA, USA 

	Michael Ristow - Swiss Federal Institute of Technology, Zurich, Switzerland

	Igor B. Roninson - Ordway Research Institute, Albany, NY, USA 

	Michael R. Rose - University of California, Irvine, CA, USA

	K Lenhard Rudolph - Hannover Medical School, Hannover, Germany 

	Paolo Sassone-Corsi - University of California, Irvin e, CA, USA

	John Sedivy - Brown University, Providence, RI, USA

	Manuel Serrano - Spanish National Cancer Research Center, Madrid, Spain 

	Gerald S. Shadel - Yale University School of Medicine, New Haven, CT, USA 

	Norman E. Sharpless - University of North Carolina, Chapel Hill, NC, USA 

	Vladimir P. Skulachev - Moscow State University, Moscow, Russia

	Sally Temple - NY Neural Stem Cell Institute, Albany, NY, USA 

	George Thomas - University of Cincinnati, Cincinnati, OH, USA 

	Jonathan L. Tilly - Massachusetts General Hospital, Boston, MA, USA 

	John Tower - University of South ern California, LA, CA, USA

	Eric Verdin - University of California, San Francisco, CA, USA 

	Thomas von Zglinicki - Newcastle University, Newcastle, UK

	Alex Zhavoronkov - lnsilico Medicine, Baltimore, MD, USA

	 

	 

	 


[image: Aging_Header_Facebook]

	Research Paper Volume 8, Issue 12 pp 3341—3355

	[image: C:\Users\Shogunbreeze\Desktop\Impact_Journals_R5\Journal_File_Covers_Images\Cover_PSDs\Aging\Aging Digital Edition\Final Edition January\Final Edition v.2\Aging Word\Altmetric_rgb.png]

	Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human

	Daniele Lettieri-Barbato 1 , Esmeralda Giovannetti 1 , Katia Aquilano 1, 2

	
		1 Department of Biology, University of Rome Tor Vergata, Rome, Italy

		2 IRCCS San Raffaele La Pisana, Rome, Italy



	received: October 3, 2016 ; accepted: November 16, 2016 ; published: November 29, 2016

	10.18632/aging.101122

	Abstract

	In developing countries the rise of obesity and obesity-related metabolic disorders, such as cardiovascular diseases and type 2 diabetes, reflects the changes in lifestyle habits and wrong dietary choices. Dietary restriction (DR) regimens have been shown to extend health span and lifespan in many animal models including primates. Identifying biomarkers predictive of clinical benefits of treatment is one of the primary goals of precision medicine. To monitor the clinical outcomes of DR interventions in humans, several biomarkers are commonly adopted. However, a validated link between the behaviors of such biomarkers and DR effects is lacking at present time. Through a systematic analysis of human intervention studies, we evaluated the effect size of DR (i.e. calorie restriction, very low calorie diet, intermittent fasting, alternate day fasting) on health-related biomarkers. We found that DR is effective in reducing total and visceral adipose mass and improving inflammatory cytokines profile and adiponectin/leptin ratio. By analysing the levels of canonical biomarkers of healthy aging, we also validated the changes of insulin, IGF-1 and IGFBP-1,2 to monitor DR effects. Collectively, we developed a useful platform to evaluate the human responses to dietary regimens low in calories.

	Introduction

	Aging and wrong lifestyle choices, including inadequate dietary patterns, increase the risk of developing several diseases such as obesity and its-related chronic degenerative diseases. Interestingly, the aging program can be accelerated by obesity [1]. It is thus likely that obesity reduces life- and health span and plays a predominant role in the onset of age-related diseases [2]. In fact, the prevalence of obesity is globally increasing in populations and has become a burden for healthcare systems. Several studies suggest that dietary restriction (DR) regimens (e.g. intermittent fasting, calorie restriction, low calorie diet) reverse obesity and improve health in human by promoting the same molecular and metabolic adaptations that have been shown in animal models of longevity. In particular, DR in humans ameliorates several metabolic and hormonal factors that are implicated in the pathogenesis of an array of age-associated chronic metabolic diseases [3,4].

	At present it is difficult to evaluate the effectiveness of DR on lifespan in humans, so that several works proposed predictive non-invasive biomarkers to evaluate the geroprotective role of DR. However, a miscellaneous of biomarkers is investigated in human intervention studies limiting the statistical robustness of the data. Whether a “biomarker-based” approach could be suitable for evaluating the effectiveness of DR still remains a matter of debate.

	Precision medicine is a medical model that proposes the customization of healthcare, with the identification of predictors that can help to find the effectiveness of health-promoting dietary interventions. Biomarkers represent potentially predictive tools for precision medicine but, although affordable 'omics'-based technology has enabled faster identification of putative biomarkers [5], their validation is still hindered by low statistical power as well as limited reproducibility of results.

	Herein, through meta-analysis we have evaluated the effect size of DR regimens on adipose mass and well-recognized biomarkers of healthy aging. Overall findings provide the geroprotective footprint of DR in humans and highlight a useful platform to validate or monitor the efficiency of dietary treatments to preserve and improve health span and longevity.

	Results

	Effects of DR on total and visceral adipose mass

	DR regimens are effective in slowing aging, and maintaining healthy status in animals [6,7]. Adipose mass quickly and dynamically responds to nutrient/energy fluctuation and its remodelling seems to mediate the beneficial effects of DR [7]. In this section we evaluated the effects of DR on adipose mass (Fig. 1). Interestingly, all studies showed clear evidence on the efficacy of DR in reducing total adipose mass in human (SDM -0.913; 95% CI -0.994, -0.832; p<0.000). Interestingly, we detected higher effectiveness of DR in healthy than unhealthy subjects (SDM -1.843; 95% CI -2.144, -1.542 p<0.000 and SDM -0.813; 95% CI -0.897, -0.728 p<0.000, respectively). Our data reveal that DR was also effective in reducing visceral fat mass (SDM -0.944; 95% CI -1.187, -0.700; p<0.000) (Fig. 1) and identify adipose mass measurement as a feasible approach to evaluate the efficacy of diets low in calories.

	[image: Changes of total and visceral adipose mass after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of fat mass (total or visceral). The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 1. Changes of total and visceral adipose mass after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of fat mass (total or visceral). The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.

	Effects of DR on adipokines and DHEA

	Among adipokines, adiponectin has an anti-inflammatory function and correlates with healthy metabolic profile. Reduction of adiponectin production is often revealed in obese and diabetic subjects [8]. These evidences highlight adiponectin as a good candidate to monitor healthy status in human. However, conflicting results emerge from circulating adiponectin levels in centenarians [9,10]. Herein we determined changes of adiponectin levels occurring after DR. As shown in Fig. 2, DR increased adiponectin levels in human (SDM 0.427; 95% CI 0.243, 0.612; p<0.000) independently of healthy status (healthy group: SDM 0.947; 95% CI 0.395, 1.499 p<0.001 and unhealthy group: SDM 0.370; 95% CI 0.155, 0.585 p<0.001). The “satiety hormone” leptin controls dietary behaviour and has been strongly associated with adipose mass. Indeed, reduced leptin levels are associated with diminished visceral adipose mass. However, unclear are evidences about its levels in healthy centenarians [9,10]. Our data reveal that leptin levels were significantly reduced in DR group (SDM -1.383; 95% CI -1.511, -1.255; P<0.000) (Fig. 3).

	[image: DR effects on circulating adiponectin. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating adiponectin. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 2. DR effects on circulating adiponectin. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating adiponectin. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.

	[image: DR effects on circulating leptin. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating leptin. The empty black square indicates the results of each study. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 3. DR effects on circulating leptin. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating leptin. The empty black square indicates the results of each study. The red diamond resumes overall results of the included studies in the forest plot.

	The hormonal profile of aging includes a marked decrease in the adrenal hormone dehydroepiandrosterone (DHEA) [11]. DHEA is taken up by adipose tissue and seems to reduce its mass protecting against obesity [12]. Epidemiologic data in the elderly cohort of long-living Okinawans (over 65) show relatively high plasma DHEA levels at older ages than the aged-matched counterpart [13]. However, as disclosed in Suppl. Fig. 1, DHEA levels were unchanged after DR (SDM 0.149; 95% CI -0.342, 0.641 p 0.551). Overall findings suggest a tight relationship between changes in circulating adipokines and reduction of adipose mass occurring after DR. Differently, DHEA modulation seems to be independent of calorie intake.

	Effects of DR on insulin, IGF-1, HOMA Index and IGBPs

	Insulin and insulin growth factors 1 (IGF-1) signalling is an evolutionary conserved pathway linking nutrient levels to fat mass and lifespan. Generally, reduced level of insulin and IGF-1 is associated with increased longevity from yeasts to mammals [14]. Differently, levels of insulin and IGF-1 are commonly higher in subjects affected by age-related diseases or obesity than lean healthy subjects [15]. In our work, we reported clear evidence about DR effects on insulin and IGF-1 levels in human (Fig. 4). In particular, we observed a significant reduction in insulin both in healthy (SDM -1.019; 95% CI -1.362, -0.675 p<0.000) and unhealthy subjects (SDM -0.811; 95% CI -0.893, -0.730 p<0.000). The same trend was detected by analysing the IGF-1 levels (SDM -0.546; 95% CI -0.750, -0.342 p<0.000). Overall data analyses (SDM -0.779; 95% CI -0.851, -0.706 p<0.000) confirm decreased insulin/IGF-1 levels as downstream effect of DR in human.

	[image: Changes of circulating insulin and insulin growth factor-1 (IGF-1) after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating IGF-1 or insulin. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 4. Changes of circulating insulin and insulin growth factor-1 (IGF-1) after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of circulating IGF-1 or insulin. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.

	The Homeostasis Model Assessment (HOMA) Index is currently a biochemical tool to estimate insulin sensitivity by matching fasting glycaemia and insulinemia [16]. A study carried out on centenarians indicates that they seem to be protected from hyperinsulinaemia, and their insulin resistance is as low, if not lower, than that of healthy younger adults [17]. The correlation between HOMA Index with obesity or aging suggests its prognostic capacity to evaluate the efficacy of health promoting strategies. Accordingly, we reported a significant reduction in the HOMA Index occurring after DR (SDM -0.837; 95% CI -0.990, -0.750 p<0.000) (Fig. 5) and this effect was stronger if dietary treatment was longer than 3 months (data not shown).

	[image: Changes of HOMA Index after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of HOMA Index. The empty black square indicates the results of each study. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 5. Changes of HOMA Index after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of HOMA Index. The empty black square indicates the results of each study. The red diamond resumes overall results of the included studies in the forest plot.

	The IGF-binding protein 2 (IGFBP2) is known as a carrier protein for IGF-1 limiting its biological action [18]. However, there are several characterized IGFBPs, which seem to improve metabolic status independently of IGFs binding [19]. Interestingly, some papers reported that DR regimens increase circulating levels of IGFBPs [20]. In our work, we analysed the changes in the levels of the best-known IGFBPs after DR. As shown in Fig. 6, DR similarly modulated IGFBP-1 and IGFBP-2 levels (SDM 1.527; 95% CI 1.248, 1.806 p<0.000 and SDM 1.687; 95% CI 1.387, 1.986 p<0.000, respectively). Differently, DR was ineffective in increasing IGFBP-3 levels (SDM -0.045; 95% CI -0.517, 0.427 p=0.853). These results suggest that IGFBP-1 and -2 are more sensitive to DR than IGFBP-3.

	[image: Changes of circulating IGFB-1, IGFBP-2 and IGFBP-3 after DR. Studies were stratified according to the design of the study. A standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of IGFB-1, IGFBP-2 or IGFBP-3. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 6. Changes of circulating IGFB-1, IGFBP-2 and IGFBP-3 after DR. Studies were stratified according to the design of the study. A standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of IGFB-1, IGFBP-2 or IGFBP-3. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.

	Effects of DR on inflammatory markers

	One of the common features of aging and obesity is the presence of a chronic sterile low-grade inflammatory status, which contributes to the onset of several metabolic perturbations [21]. In our work we evaluated the changes in circulating inflammatory markers observed after DR (Fig. 7). Interestingly, among the evaluated inflammatory markers, only CRP and IL-6 displayed a significant reduction after DR (SDM -0.715; 95% CI -0.862, -0.568 p<0.000 and SDM -0.316; 95% CI -0.515, -0.118 p<0.002, respectively). Although IL-1 and TNF-α are cytokines routinely assayed to monitor systemic inflammation, our data revealed that their level remained unchanged after DR (SDM 0.041; 95% CI -0.181, 0.263 p=0.719 and SDM -0.079; 95% CI -0.264, 0.106 p=0.402, respectively). Overall data regarding CRP, IL-6, IL-1 and TNF-α levels revealed anti-inflammatory effect of DR in human (SDM -0.351; 95% CI -0.442, -0.260 p<0.000) (Fig. 7).

	[image: Changes of inflammatory markers after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of CRP, IL-1, IL-6 or TNF-alpha. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.]

	Figure 7. Changes of inflammatory markers after DR. Studies were stratified according to the design of the study. A positive standardized difference in mean (SDM) indicates an increase, whereas a negative SDM indicates the decrease of CRP, IL-1, IL-6 or TNF-alpha. The empty black square indicates the results of each study, whereas empty blu square shows the summary results of each subgroup data. The red diamond resumes overall results of the included studies in the forest plot.

	Discussion

	Aging is commonly defined as a physiological decline of biological functions in the body. Aging strongly remodels adipose depots by reducing subcutaneous adipose in favour of visceral depots enlargement [22]. Aging and visceral adipose tissue expansion act in synergy in inducing a chronic low grade of inflammatory status, which triggers a systemic metabolic decline in human [21,23]. DR is a promising and feasible strategy that ameliorates body metabolic and inflammatory profile increasing lifespan through evolutionary-conserved mechanisms [4,22,24,25]. Herein we included all studies evaluating the impact of DR on several healthy-associated markers in human including adipose mass. Increased visceral adiposity leads to chronic inflammation, which is often associated with a number of comorbidities (e.g. hyperinsulinemia, hypertension, insulin resistance, glucose intolerance) and reduced life expectancy [26,27]. Through this meta-analysis approach, we confirmed the capacity of DR to reduce total and visceral adipose mass and, interestingly, we observed a more effective visceral adipose mass reduction after DR regimens (-20% in DR: SDM -1.081; 95% CI -1.242, -0.921 p<0.000) (-30/40% in DR: SDM -0.893; 95% CI -1.050, -0.737 p<0.000 and >-40% in DR: SDM -0.678; 95% CI -0.800, -0.555 p<0.000). These findings suggest that to obtain a more effective adipose mass loss, 20% in calorie reduction could be an elective strategy. Central or visceral adiposity perturbs systemic inflammation in animal models and human and relatively to this, the healthy effects of DR could be mediated by visceral adiposity reduction. Indeed, DR significantly diminished the markers of inflammation, highlighting the central role of DR-mediated adipose tissue remodelling in improving inflammatory profile in human. Furthermore, DR also increased adiponectin/leptin ratio, which is commonly associated with ameliorated insulin sensitivity in human. In line with this effect, we demonstrated that DR was successful in reducing insulin, IGF-1 and HOMA index.

	The insulin growth factor binding proteins (IGFBPs) are a family of proteins that bind to insulin-like growth factors limiting their biological actions [28]. IGFBP-2 is the most abundant among circulating IGFBPs and its anti-diabetic role as well as direct ability to limit adipogenesis has been demonstrated [29,30]. Actually, high serum levels of IGFBP-2 appear to protect against obesity and type 2 diabetes [30]. IGFBP-1 showed an inverse relation with insulin and BMI in human [31]. Differently, unclear are the evidences about the link between IGFBP-3 and adipose mass. In accordance with the data described above, we observed a strong responsiveness in circulating levels of IGFBP-1 and -2 occurring after DR. However some limitations emerge from this meta-analysis. In particular, statistical analyses on IL-1 and IGFBPs were carried out only evaluating the results obtained from few studies [32-35]. Moreover, it was not possible to evaluate the efficiency of DR in gender or time of treatment subgroups because it was difficult to collect a good number of subjects.

	In conclusion, by a meta-analysis approach we have provided evidences about DR efficiency on key hallmarks of aging (Fig. 8) and built a useful platform to evaluate the responses of human to dietary regimens low in calories (Fig. 9).
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	Figure 8. Geroprotective footprint of dietary restriction.

	[image: Algorithm development for biomarkers validation of dietary restriction in human. CR: calorie restriction; VLCD: very low calorie diet; IF: intermittent fasting; ADF: alternate-day-fasting.]

	Figure 9. Algorithm development for biomarkers validation of dietary restriction in human. CR: calorie restriction; VLCD: very low calorie diet; IF: intermittent fasting; ADF: alternate-day-fasting.

	Materials and Methods

	Search strategy and included studies

	In our work we analysed human intervention studies and evaluated the impact of DR regimens on adipose mass and some biomarkers of healthy aging (Geromarkers). The Geromarkers included in our meta-analysis were described in Table 1. Two investigators, E.G. and D.L.B., independently carried out study selection and included both studies with an experimental design (EXP) and quasi-experimental design (Q-EXP). EXP studies were randomized with a control group and a parallel or crossover design; whereas Q-EXP included observational studies (pre- and post-intervention or pre- and post-data), non-randomized or uncontrolled studies [36]. Q-EXP studies were pooled together with EXP studies only after assessing whether they were in agreement with EXP studies [37]. Candidate studies were searched in PubMed (finalized February 30, 2016) using the terms ‘calorie or caloric or dietary restriction’, ‘fasting or intermittent fasting or alternate day fasting and ‘adipose tissue or fat mass or fat tissue’’. Inclusion criteria were as follows: human intervention studies with long-term study design (> 3 months); healthy and unhealthy (e.g. dyslipidaemia, obesity, metabolic syndrome) subjects; numerically analysable information about results, study duration and calories reduced in the study. Studies were excluded when: only abstracts were available; duration time of the study was lesser than 3 months; data presentation was incomplete; information about the DR was incomplete. When necessary, efforts were made to contact investigators for clarification or additional data. This research strategy produced a total of 201 studies. Furthermore, a manual research of references from clinical studies and reviews identified 42 additional studies, for a total of 243 studies to be evaluated, 9 of which are reviews [38-46]. A first screening allowed discarding 147 articles whose titles or abstracts were evidently irrelevant to our aim. Of the remaining 96 studies, 53 were rejected whenever: they presented incomplete data; DR was coupled with physical exercise; there were no reported data on adipose mass; they only presented data on weight and fat mass without other parameters (Fig. 10). Therefore, from 243 initial candidates, the 43 studies available for a formal meta-analysis had the following characteristics: they were written in English; they had a period of intervention of at least two weeks; they were carried out exclusively on human subjects. Among the considered studies, 12 were on females [32,34,35,47-55], 4 on males [56-59], and the rest mixed [60-62,33,63-85]. Moreover, 30 studies were intervention studies evaluating the efficacy of calorie restriction [33-35,47-49,51-53,56,58-60,63-67,69,71-73,75,76,79-82,84,85]; 4 were intervention studies evaluating the efficacy of intermittent fasting [50,57,61,70]; 9 were intervention studies evaluating the efficacy of low or very low calorie diets [32,54,55,62,68,74,77,78,83]. The selected studies included human groups with different BMI. In particular, 10 were studies on obese [34,35,48,50,53,54,58,61,64,68], 16 on overweight [51,52,57,59,62,63,65,69,71-73,77-79,82,85], 12 on both obese and overweight [32,47,49,55,60,62,74,75,80,81,83,84], 5 on both normal weight and overweight [33,66,67,70,76]. Finally, the studies were on healthy subjects, with the exception of few articles in which subjects were affected by the following pathologies: chronic osteoarthritis [64]; metabolic syndrome [59]; hyperinsulinemia [58,72], polycystic ovary syndrome [49], type 2 diabetes [84]. Hence, the meta-analysis was based on 43 studies and analysed a total of 2094 subjects. Before analyses, all studies were stratified for gender, healthy status, time of treatment and percentage of calorie reduction and the main characteristics of the included studies were reported in Table 2. Calorie restriction, intermittent or alternate-day-fasting and low calorie diet interventions were overall grouped in dietary restriction (DR) category.

	Table 1. Selected biomarkers and number of the studies included in meta-analysis.

	
		
				Biomarkers

				n. of the studies

		

		
				Fat Mass (total and visceral)

				38

		

		
				Adipokines (adiponectin and leptin)

				22

		

		
				IGFBPs (IGFBP-1, -2, -3)

				6

		

		
				IGF-1

				4

		

		
				HOMA-Index

				17

		

		
				Insulin

				34

		

		
				Inflammation (TNFa, IL-1, IL-6, CRP)

				17

		

		
				DHEA

				5

		

	

	[image: Flow chart of the study identification and selection.]

	Figure 10. Flow chart of the study identification and selection.

	Table 2. Characteristics of the included studies for the meta-analyses.

	
		
				Study Design

				Gender Stratification

				Healthy Status Stratification

				Time of Treatment

		

		
				Unrandomized

				Randomized or Controlled

				Randomized and Controlled

				Cross-Sectional

				Yes

				No

				Yes

				No

				Brief
(<3 months)

				Long-Term
(>3 months)

		

		
				 

				 

				 

				 

				 

				 

				 

				 

				 

				 

		

		
				4

				14

				23

				2

				16

				27

				36

				2

				26

				16

		

	

	Data analysis

	Relevant data of the 43 studies available were entered for formal meta-analytic evaluation into the Comprehensive Meta-Analysis software (Biostat) [86]. Data analysis was performed as previously described [87]. In particular, for the results showed as post-data only, we selected mean, standard deviation and sample size in each group, or difference in means, sample size and p value between groups. When results were reported as pre- and post-data, we used mean, standard deviation, sample size in each group and correlation between baseline and end-point intervention period, or mean change, standard deviation difference, sample size in each group, correlation between baseline and end-point intervention period. For observational studies considering only one group (pre–post-intervention data), we used mean difference, standard deviation of difference and sample size. In all studies, we assumed the correlation between baseline and end-point study period to be 0.5 to produce the most conservative estimate [37,88], To enable a joint comparison, the standardized difference in mean (SDM) was calculated for each outcome. In our analysis, positive SDM indicates increased effect size of calorie restriction on outcome considered. The effect sizes of the included studies were pooled both under a ‘fixed effects model’ or ‘random effect model’. Under fixed effects model we assumed that the true effect is the same in all studies. By contrast, under the random-effects model we allowed that the true effect may vary from one study to the next [37]. Fixed or random effect model was selected following evaluation of heterogeneity between studies based on the I2 test for heterogeneity. When I2 values were low, we selected a fixed effects model, whereas random effects model was selected for I2values higher than 75%.
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	Putin et al. [1] just published an excellent article showing how machine learning methods (specifically deep neural networks, DNNs) can be used to quantify the aging process using a set of 41 standard clinical biomarkers, most of which are not specifically recognized as biomarkers of aging. DNNs provide a method to obtain a predictive algorithm from raw data (the biomarkers in this case) with minimal to no a prioriassumptions (see Mamoshina et al. 2016 [2] for details). This is an important finding because (a) it confirms that aging is not a single specific process, but rather a suite of changes that are felt across multiple physiological systems, probably within a complex systems frame-work, and (b) it suggests that measurement of the aging process is feasible with simple, standard measures. Both of these agree with recent findings from our lab showing that similar sets of biomarkers perform well for measurement of physiological dysregulation [3-7]. The difference is that our models are geared toward understanding the biology, and Putin et al. [1]'s toward prediction (i.e., estimation of biological age, though they do not use the term). Their model substantially outperforms ours for age prediction, but because the underlying algorithm is sufficiently complex as to remain a black box, it can provide relatively little insight into mechanisms. The two approaches are thus complementary.

	There is, however, a substantial caveat to Putin et al. [1]'s approach that was not mentioned in their article. Their algorithm was developed based on clinical data from a single source covering Eastern Europe (90% Russia), and the applicability to data from other settings or to population subsets was not verified. There are a number of reasons to suspect that their algorithm would need to be adjusted for application in other settings: (1) Aging rates may differ across countries; (2) Genetic and environmental determinants of physiology may differ across countries/cultures, independent of aging; and (3) There may be specific biases in how clinical lab samples are taken and analyzed that differ substantially across health systems. These distinctions are not trivial: a universal measure of biological age has very different practical and biological implications than one that is highly contextual. They also represent a more general challenge for machine learning in the health domain: traditional applications of such techniques (e.g. facial recognition, sentence completion [2]) are not generally subject to bias or anything related to the epidemio-logical concept of confounding, whereas such problems are rife in (bio)medical fields. There is thus substantial potential for development of methodological approaches to adjust for bias in machine learning methods applied in biomedical research.

	We have access to similar data to that used by Putin et al. [1] for three major aging cohort studies, the Women's Health and Aging Study I &II (WHAS)[8], the Baltimore Longitudinal Study on Aging (BLSA)[9, 10], and Invecchiare in Chianti (InCHIANTI)[11], as well as publicly available cross-sectional data for a representative sample of the American population from the National Health and Nutrition Examination Survey (NHANES)[12]. For each study, we randomly chose 110 participants, stratified by age when necessary to achieve a broad age range, and input their values for the 10 basic biomarkers (albumin, glucose, alkaline phosphatase, urea, erythrocytes, cholesterol, RDW, alpha-2 globulins, hematocrit, and lymphocytes) in the online tool provided by Putin et al. [1] at www.aging.ai. Alpha-2-globulins were only present in InCHIANTI, so we left the field empty in the other data sets (the DNN is capable of treating missing data, though this reduces accuracy). In addition, we ran as many of the full 41 biomarkers as possible for a set of 10 individuals per study, chosen randomly by age stratum from among the 110 run with 10 biomarkers. The number of biomarkers available was: WHAS: 34 biomarkers out of 41, BLSA: 37, InCHIANTI: 38, and NHANES: 33.

	We found that indeed the performance of the model was substantially diminished in all four of our data sets. In the original study, the 10-biomarker version of the DNN has a 10-year epsilon accuracy (i.e., percentage correct prediction within age±10 years) of 70% and R2 = 0.63; across our datasets the mean epsilon accuracy was 38% and mean R2 = 0.37, with maximum epsilon accuracy = 56% (InCHIANTI) and maximum R2 = 0.59 (NHANES, Fig. 1). The 41-biomarker versions performed neither markedly better nor worse, with a mean age error (MAE) actually increasing by 0.45 (95%CI: [−2.2, 1.3]) across our 40 samples. The confidence intervals and consistency across data sets are sufficient to exclude the possibility that our core results are due to the use of the 10-biomarker rather than the 41-biomarker tool (Fig. 1).
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	Figure 1.

	Correlation between actual and predicted age values on 110 observations from four databases (a) WHAS, (b) BLSA, (c) InCHIANTI, and (d) NHANES] using the DNN on 10 biomarkers (small circles) or all available biomarkers (large squares). Paired observations with 10 and all available biomarkers are linked by vertical lines. Orange symbols are men and black symbols are women. MAE is mean age error and Δ MAE is difference between MAE 

	 

	In addition to heterogeneity of performance across data sets, the DNN had a significantly better performance for men than for women globally (MAE diff= 1.8, p=0.04) and in InCHIANTI (MAE diff= 5.5, p=0.002) and NHANES (MAE diff= 4.2, p=0.007), though there was no significant effect in BLSA (MAE diff= −1.5, p=0.39). This is consistent with our findings on other measures of biological age, which for some reason consistently perform better for men, even when the methods are calibrated on women ([4] and unpublished data using methods from [13, 14]).

	One potential reason for the poorer performance of the model in our datasets is the absence of children. Including children increases the age range, which by itself, all else equal, will increase r and R2 statistics [15]. Whether a measure of biological age needs to be accurate for children too is perhaps debatable or context-dependent, but clearly we would like the measure to be able to discriminate ages among adults well.

	Additionally, we found a clear bias in the age estimates for BLSA and WHAS, with age substantially underestimated for almost all individuals in both data sets (Fig. 1a, b). This is actually consistent with the results of Putin et al. [1]. Their Fig. 1 a, d shows a bias toward underestimation of age for individuals aged 70+, and the BLSA and WHAS datasets largely contain individuals in this age range. For InCHIANTI and NHANES as well, ages of older individuals are underestimated and ages of younger individuals are overestimated, though less so than for BLSA and WHAS. Globally this suggests that Putin et al. [1]'s model performs well when the age range is large, but loses discriminatory power particularly at older ages. If the age bias is larger in BLSA and WHAS, as it appears to be, this might also imply that these populations age more slowly, an interesting finding.

	However, such differences could also be due to something more mundane such as diet. Dietary patterns differ substantially between Eastern Europe, Italy, and the US, and diet is known to affect many clinical biomarkers (e.g. [16-18] ), so it is hardly surprising that performance of algorithms based on these markers differs across these populations. Likewise, the majority of data used by Putin et al. [1] come from middle-aged individuals, and life expectancy in Russia is much lower than in Italy or the US [19], and has a substantially different cause composition [20]. We expect that many such factors contribute jointly to the patterns observed here.

	In sum, these results show that there is unlikely to be a single algorithm that can predict biological age for all populations/sexes based on these clinical biomarkers. While we have not explored other population strata, such as by race, socioeconomic status, or environmental exposures, differences likely exist among these groups as well. The methods used by Putin et al. [1] are state of the art and perform well within their original dataset, suggesting that the barrier is true population differences rather than algorithm refinement. Population-specific algorithms might be an option but would require substantial work. Practically, this result is unfortunate, but biologically it is interesting. It implies that aging proceeds differently, and perhaps at different rates, in different populations. Other measures of biological age – for example, the epigenetic clock, or based on highly specific aging biomarkers such as leukocyte telomere length (LTL) – may or may not face these same hurdles [13-15, 21-23]. However, longitudinal changes in LTL depend on demographics, genes, and environment [24], implying that there will be population differences in how it works as a measure of biological age. More broadly, our results suggest that substantial caution is warranted in generalizing age-related changes in biomarkers across populations. Future work should attempt to replicate these findings in appropriate datasets from non-Western countries [25, 26], and to assess the performance of more diverse, integrated datasets.
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	Abstract

	One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R2 = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R2 = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.

	Introduction

	Aging is a complex process affecting all biological systems at every level of organization [1,2]. While many anti-aging interventions have demonstrated life-extending or other geroprotective effects in model organisms, practical limitations continue to hamper translation to the clinic [3]. One problem is that the evaluation of aging changes and possible anti-aging remedies requires a comprehensive set of robust biomarkers [4] . Large-scale longitudinal programs like MARK-AGE [5] have been launched to analyze changes in multiple biomarkers during aging and correlation between biological and chronological age. Several "aging clocks" able to predict human chronological age using various biomarkers have already been proposed. Methylation-based markers such as epigenetic aging clocks (Horvath [6] and Hannum [7]) are currently the most accurate, while transcriptomics [8,9] and metabolomics [10] have shown to be less so. Telomere length is commonly used to measure senescence but has lower predictive ability of human chronological age than IgG N-glycans, immunoglobulin G glycosylated at conservative N-glycation sites [11]. Recent studies show that biomarkers of age-related pathologies could be used to evaluate senescence modifications based on the connection between age-related pathologies at the signaling pathway level [12].

	However, most of these biomarkers are not representative of the health state of the entire organism or individual systems and are not easily measured or targeted with known interventions. The common blood biochemistry test is one of the simplest tests used by physicians to examine the health state of patients. While being highly variable in nature, some markers from blood biochemistry are sensitive indicators of various conditions, such as inflammation and even alcoholism, and are approved for clinical use [13, 14].

	Machine learning (ML) techniques, such as support vector machines (SVM), are routinely used in biomarker development [15] and rapid increases in labeled data are enabling deep neural networks (DNNs). Methods based on deep architectures have outperformed classical approaches not only in image analysis, but also in solving a wide range of genomics, transcriptomics and proteomics problems [16].

	In this study, we apply a deep learning technique for predicting human chronological age that utilizes multiple DNNs stacked into an ensemble and trained on tens of thousands of blood biochemistry samples from patients undergoing routine physical examinations. We then use a custom implementation of the permutation feature importance (PFI) technique [17] to evaluate the relative importance of each blood biochemistry marker to ensemble accuracy. We also analyzed the performance and accuracy of 40 DNN architectures optimized using a variety of optimizers, identified the best DNN, and selected 21 DNNs that cumulatively provided higher accuracy and as an ensemble than the best DNN in the ensemble.

	Results

	To perform this study, we obtained a dataset of 62,419 anonymized blood biochemistry records, where each record consists of a person's age, sex, and 46 standardized blood markers through a collaboration with one of the largest laboratory networks in Russia, Invitro Laboratory, Ltd. We aimed to draw data from a reasonably healthy population. While we did not have access to patient records, we selected only blood tests from routine health checks, avoiding obvious sources of unhealthy patients, such as hospitals, and through statistical analysis omitted blood tests with outliers.

	The generalized project pipeline is depicted in Figure 1. First, we preprocessed the blood test data set, excluding highly biased markers from reference ranges, normalizing them for training the DNNs, and removing outliers (see Methods for details). The resulting data set was split into training and test sets comprised of 56,177 and 6242 samples, respectively. Then 40 different DNNs were trained on 56,177 blood test samples.
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	Figure 1. Project pipeline. Laboratory blood biochemistry data sets were normalized and cleaned of outliers and some abnormal markers. For biological age prediction, 21 different DNNs with different parameters were combined in ensemble based on ElasticNet model. For biological sex prediction, single DNN were trained.

	Since we treated human age prediction as a regression problem, we used two metrics to estimate the performance of the method: standard coefficient of determination (R2) and ε-prediction (epsilon-prediction) accuracy (see Methods for details). When using epsilon-prediction accuracy, the sample is considered correctly recognized if the predicted age is in the range of [true age -ε; true age +ε], where ε controls the level of certainty in the prediction. So if ε = 0, then it is a simple classification accuracy. In this study, we considered ε = 10. The key advantage of using epsilon-prediction accuracy is that it allows cohort analysis without fixed age ranges (e.g. 10-20, 20-30).

	The best single DNN performed with 0.80 of R2 and 82% within the 10 year frame of epsilon-prediction accuracy (Figure 2 A & B). Single DNN outperformed other ML models such as k-Nearest Neighbors, Support Vector Machine, Random Forests, Gradient Boosting Machine, etc (Figure 3 & B).
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	Figure 2. Analysis of best DNN model in the ensemble and the whole ensemble. (A) Correlation between actual and predicted age values by the best DNN in the ensemble. (B) Biological age epsilon-prediction accuracy plot for the best DNN. (C) Biological age marker Importance, performed using FPI method. (D) Correlation between actual and predicted age values by whole ensemble based on ElasticNet model. (E) Biological age epsilon-prediction accuracy plot for the ensemble. (F) Heat map for Pearson's correlation coefficients between 40 DNNs. Scale bar colors indicate the sign and magnitude of Pearson's correlation coefficient between predictions of DNNs.
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	Figure 3. DNNs outperform baseline ML approaches in terms of R2 statistics. DNN were compared with 7 ML techniques: GBM (Gradient Boosting Machine), RF (Random Forests), DT (Decision Trees), LR (Linear Regression), kNN (k-Nearest Neighbors), ElasticNet, SVM (Support Vector Machines). (A) GBM shows the higher 0,72 R2 among ML models for biological age prediction. (B) All ML models have comparable high R2 for biological sex prediction.

	To further increase the coefficient of determination and accuracy of predictions, we combined these single DNNs into an ensemble based on the stacked generalization (Stacking) technique [18]. Stacking is a method that fits some ML models on the predictions of other models, in our case on the predictions of DNNs. Model selection was performed with 10 fold cross-validation and with the random search strategy for finding the best hyperparameters for considered models. The experiments with Stacking models showed (Figure 4 A & B) that the best ML model was ElasticNet.

	[image: https://s3-us-west-1.amazonaws.com/paperchase-aging/paper_figures/SzdNR3HCatAdyvwPR_f4.jpg]

	Figure 4. Comparison of sub-models for stacking ensemble and evaluation of filling strategies. (A) ElasticNet model has the higher epsilon-prediction accuracy among the stacking models. (B) ElasticNet is the best model for stacking from the point of R2 statistics. (C) Median filling strategy has higher epsilon-prediction accuracy than other strategies. Median filling strategy shows 64,5 % epsilon accuracy within 10 years frame. (D) Median filling strategy is better from the point of R2 statistics.

	To successfully combine the predictions of DNNs into the Stacking ensemble model, the predictions of DNNs should closely approximate the target variable and differ from one another, or be less correlated. To achieve this, DNNs should be trained with different hyperparameters, varying in the number of layers, counts of neurons in each layer, activation functions, regularization techniques, etc. We investigated 40 DNNs, each unique in terms of hyperparameters. Pearson correlations of these DNNs are presented in a heat map on Figure 2 F, showing a high degree of similarity among many of the networks regarding predictions (r approaching 1) but also some major distinctions.

	To determine how many of these trained DNNs were necessary for constructing the Stacking ensemble model, we performed an iterative process of adding each DNN's predictions vector into the ensemble. Two iterative strategies were employed: adding predictions by decreasing R2 of each network, i.e. adding better networks considering R2 earliest in the ensemble, and increasing the correlation between DNNs, i.e. adding less correlated networks first. The results of this assay are presented in Figure S2. Both strategies showed that no more than 21 DNNs were needed in the ensemble. The ensemble resulting from distinguishing the correlations of DNNs and ordering the addition of DNNs into the ensemble demonstrated R2=0.82 and 83,5% within a 10 year frame of epsilon-prediction accuracy (Figure 2 D & E).

	We compared our deep-learned predictor with several published epigenetics and transcriptomics markers of human age. Surprisingly, despite the fact that we used only blood biochemistry data with 41 values for each patient, our biomarker outperformed blood transcriptomics biomarkers presented by Peters et al with R2=0,6 for the best model [8]. Due to the nature of the data, epigenetics markers show a stronger correlation with chronological age, with R2=0,93 for Horvath's methylation clock and R2=0,89 for the Hannum et methylation clock [6,7].

	Marker importance

	In order to analyze the importance of blood test markers via neural networks, some wrapper feature (selection) importances approaches are required. We used a modification of the Permutation Feature Importance (PFI) method (see Methods for details). By applying this method, one receives a list sorted by the importance of markers via DNN. This technique has two benefits: 1) it is native and simple to interpret and 2) as other wrapper methods it relies on DNN performance, which in this case is better than other ML models, thus produces more robust and meaningful features. Marker importance analysis by PFI method, the results of which are presented in Figure 2 C, reveals the five important markers: albumin, glucose, alkaline phosphatase, urea, and erythrocytes.

	Top features

	We also performed so-called top features analysis, which answers how the performance of a single DNN will decrease as the number of markers used in the model decreases. To select the smaller number of markers for training the DNN, the sorted list of all PFI scores is used. The results of this analysis for both R^2and epsilon-prediction accuracy are presented on Figure 5 A & B. For the top 10 features by PFI, the DNN got R2=0.63 and 70% of 10 year frame epsilon-accuracy prediction. In practical terms, the fact that this drop in performance was so small supports the top 10 markers received by PFI as robust and reliable features for predicting age.

	Use case

	To make this deep network ensemble available to the public, we placed our system online (www.Aging.AI), allowing any patient with blood test data to predict their age and sex. In order to validate our approach, we collected the blood biochemistry reports that were uploaded on the site from 25 January to 15 March 2016.

	The total number of collected reports with indicated real age was 1,563 samples. Many users expressed no desire to specify all 41 parameters of the blood test, so we added an option to enter only the 10 most important markers. The average number of missing values provided by the volunteer testers was 18.5 markers per person. There are several strategies for filling skipped values, including zero, mean, mode and median over all values of each marker. Evaluation of these 4 strategies on the aging.ai data showed that median filling strategy has the best performance in terms of both R2 and epsilon-prediction accuracy (Figure 4 C & D).
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	Figure 5. Top features analysis. (A) Dependence of the epsilon-prediction accuracy from the number of features. (B) Dependence of R2 statistics from the number of features.

	Aging.AI provides a proof of concept for a simple and inexpensive blood-based predictor of chronological age, which may be used for speculate on the biological age of the patient. However, it has many limitations. When it comes to developing predictors using deep neural networks, one of the major difficulties is building large data sets. In this study we were constrained by the limited number of features available to us in large numbers of blood test results. Some of the features, for example globulin fractures, are no longer frequently used in diagnostic medicine and are excluded from the newer standard tests. However, these features were present in historical tests available in large numbers and were used for training.

	Discussion

	Aging is a complex process and occurs at different rates and to different extents in the various organ systems, including respiratory, renal, hepatic, and metabolic [19,20]. The analysis of relative feature importance within the DNNs helped deduce the most important features that may shed light on the contribution of these systems to the aging process, ranked in the following order: metabolic, liver, renal system and respiratory function. The five markers related to these functions were previously associated with aging and used to predict human biological age [21,22]. Another interesting finding was the extraordinarily high importance of albumin, which primarily controls the oncotic pressure of blood. Albumin declines during aging and is associated with sarcopenia [23]. The second marker by relative importance is glucose, which is directly linked to metabolic health. Cardiovascular diseases associated with diabetes mellitus are major causes of death within the general population [24].

	Our approach of using an ensemble of DNNs outperformed other ML models in terms of R2 and epsilon-prediction accuracy (Figure 3 A & B).

	Application of DNNs uncovered complex nonlinear interactions between markers resulting in robust ensemble performance. This ensemble may also be expanded with DNNs trained on different sources and types of biological data allowing for complex multi-modal markers to be created and relative contributions of each input analyzed.

	Current and future directions of this work include adding other sources of features including transcriptomic and metabolomics markers from blood, urine, individual organ biopsies and even imaging data as well as testing the system using data from patients with accelerated aging syndromes, multiple diseases and performing gender-specific analysis. Similar tests may be performed by research teams working on rare diseases or working with athletic groups by using http://www.Aging.AI system or contacting the authors to perform a high-throughput analysis. Developing similar systems for model organisms and performing PFI analysis may help perform cross-species analysis and of the relative importance of individual markers and organ systems in predicting chronological and biological age.

	Materials and Methods

	Data. Anonymized statistical data of human blood tests was kindly provided by an independent laboratory, Invitro (www.Invitro.ru). No patient records were used in the study. In total, the data contains 62419 records where each record consists of person's age and 46 standardized blood markers, such as Glucose, Cholesterol, Alpha-1-globulins, etc. (Table S1) Histograms of human age for training sets and descriptive statistics of top 10 blood markers used in the research are depicted in the Figure S1 A.

	One can see from the Figure S1 B that minimum and maximum values of each marker are far distributed from their normal range values. This distribution reflects patients' tendencies to self-report symptoms and test their health with professional health-care services only in complex cases, which affects their health condition and thus test results [25]. Moreover, we found that there were no patients that could be considered as healthy and who have blood test values within a reference range. The most frequently abnormal markers in the distribution were white blood cell count markers: basophils, abs., eosinophils, abs., lymphocytes abs. monocytes, abs, neutrophils, abs. These types of test provide the total number (absolute number, abs.) of white blood cells in blood microliter. Here, this routine analysis was conducted using a hematology automated analyzer, which counts cells precisely with low error rate [26]. In this case, these aberrant values of markers are more likely linked to the major function of white blood cells; immune function, infections, allergies, smoking [27] or even sleep duration [28] could affect the rate of white blood cells. Additionally, recent studies show a connection between metabolic diseases such as diabetes and range of white blood cells [29,30]. For this reason, levels of basophils, eosinophils, lymphocytes, monocytes and neutrophils are extremely variable in the general population. To prevent DNN predictions from being highly biased with respect to abnormal ranges of blood markers, we excluded these 5 markers. Processed data was presented in a tabular format of 62419 rows and 42 columns (age and sex + 41 markers).
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	Equation 1.

	We split the data to the training and test sets with 90/10 ratio. Thus, the size of training and test sets were 56177 and 6242 samples, respectively. The DNN was built by adjusting its hyperparameters (such as a number of layers, activation function, etc.) on the training set and measuring the performance of the trained neural network on the test set. The comparison of performances of 6 best DNNs with different values of hyperparameters is depicted on Table S1. All experiments were conducted on Nvidia Tesla K80 graphics processing unit.

	There are two reasons why in the study we treated the prediction of human age as a regression problem: 1) age has natural order, so it is an order variable and 2) one may be interested in the difference in values of the markers with difference in ages, which is the natural way to perform the analysis of marker influence. In this case, it was better to use regression instead of classification methods.
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	Equation 2.

	Feature importance method. The idea behind the algorithm stemmed from the feature randomization technique used in Random Forest (RF) [31]. PFI computes significance scores for all features by determining the accuracy of a model to random permutations of the values of those feature variables. The main underlying assumption is that permuting the values of important features results in a more significant reduction in a model's performance compared to the effect of less important ones. But when cross-validation is not performed, one should improve the robustness of the method.
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	Equation 3.

	Note that PFI is a wrapper method, so it would significantly depend on applying ML model, but because DNNs show better performance than other ML models, it was suitable for the problem.

	Architecture of DNN. We used simple feed-forward neural networks trained with the standard backpropagation algorithm as our deep (more than 3 layers) learning models. For each DNN in the resulting ensemble, multiple hyperparameters were adjusted, including the number of hidden layers, the number of neurons in each layer, choice of activation function, choice of optimization method, and regularization techniques. The table with experiments of different hyperparameters for the DNNs are presented in Table S1.

	The best DNN in the ensemble had 5 hidden layers with 2000, 1500, 1000, 500, and 1 neurons in each, respectively. The last layer, with one neuron, corresponds to regression output. The optimization loss function was simple mean squared error (MSE) with regularization terms. The DNN used PReLU activation function [32] in each layer, AdaGrad [33] as optimizer of the loss function, Dropout [34] with probability of 0.2 after each layer, and l2 weight decay [35]. To further cope with over fitting and make more stable convergence of models, we used Batch normalization technique [36] after the first 2 layers.
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	Abstract

	Age induces a progressive decline in functional reserve and impacts cancer treatments. Telomere attrition leads to tissue senescence. We tested the hypothesis that telomere length (TL) could predict patient vulnerability and outcome with cancer treatment.An ancillary study in the Elderly Women GINECO Trial 3 was performed to evaluate the impact of geriatric covariates on survival in elderly advanced ovarian cancer patients receiving six cycles of carboplatin. TL was estimated from peripheral blood at inclusion using standard procedures. TL (in base pairs) was estimated for 109/111 patients (median 6.1 kb; range [4.5-8.3 kb]). With a cut-off of 5.77 kb, TL discriminated two patient groups, long telomere (LT) and short telomeres (ST), with significantly different treatment completion rates of 0.80 (95%CI [0.71-0.89]) and 0.59 (95%CI [0.41-0.76]), respectively (odds ratio [OR]=2.8, p=0.02). ST patients were at higher risk of serious adverse events (SAE, OR=2.7; p=0.02) and had more unplanned hospital admissions (OR=2.1; p=0.08). After adjustment on FIGO stage, TL shorter than 6 kb was a risk factor of premature death (HR=1.57; p=0.06). This exploratory study identifies TL as predictive factor of decreased treatment completion, SAE risk, unplanned hospital admissions and OS after adjustment on FIGO stage.

	Introduction

	Aging is associated with a progressive decline in the functional reserve of multiple organ systems [1]. Given that the process of aging is heterogeneous, this decline should ideally be assessed individually and care of an elderly person adapted accordingly rather than solely on the basis of chronological age. Such assessments are currently entirely clinical, based on a geriatric evaluation.

	During normal ageing, the gradual loss of telomeric DNA in dividing somatic cells contributes to replicative senescence [2]. Importantly, this telomere length dynamics plays an important signaling role in determining cell fate during aging and cancer [3]. There is growing evidence linking pathologic aging to telomere shortening in prospective studies recruiting elderly patients, although there is some controversy associated with this research. Patients with shorter telomeres tend to develop more functional disabilities [4], have increased cognitive loss [5], higher cardiovascular morbidity [6], more degenerative diseases [7] and higher mortality [8].

	In an oncologic context, the impact of aging on a patient's survival is challenged by the nature of the tumor itself, which in turn means a differential impact of geriatric covariates on overall survival (OS). In 1997, the French National Group of Investigators for the Study of Ovarian and Breast Cancer (GINECO) established a research program focused on the treatment of ovarian cancer in elderly women. The feasibility of carboplatin-cyclophosphamide and standard carboplatin AUC5-paclitaxel protocols in patients over 70 years of age was demonstrated in two studies [9,10], with treatment completion rates of 76% and 68% respectively [10]. A multivariate analysis performed in a non-randomized retrospective review of these trials reported a significant negative impact of various geriatric covariates on survival [10]. A prospective trial, the Elderly Woman GINECO Trial 3, was thus initiated to evaluate the impact of geriatric covariates on survival in elderly patients with advanced ovarian cancer treated with six cycles of carboplatin AUC5. A geriatric vulnerability score (GVS) was developed which segregates patients into two groups with significantly different outcomes in terms of treatment completion rates and risk of treatment toxicities (serious and severe adverse events, unplanned hospital admissions, [11]).

	An ancillary study was envisaged in the original design of the GINECO Trial 3 with a working hypothesis that telomere biology influences patients' future outcomes and may correlate with a clinical geriatric assessment. The results reported here pinpoint an association between short TL, treatment tolerance and completion in ovarian cancer patients.

	Results

	An overall decrease in telomere length with age in the patient cohort used in this study

	Duplicate telomere length (TL) distribution measurements were performed on blood samples from 109 of the 111 patients included between August 2007 and January 2010. Patient characteristics and outcome of the geriatric assessment are shown in Table 1. Median follow-up was 16.4 months (range 0.2-49.6).

	Table 1. Patient and disease characteristics and geriatric assessment

	
		
				 

				N of patients (%)

		

		
				Median age in years (range)

				78 (70-93)

		

		
				 ≥80 years

				44 (40.3)

		

		
				Performance status (ECOG) ≥2

				51 (46.8)

		

		
				Tumor assessment

				 

		

		
				 FIGO stage IV

				38 (34.9)

		

		
				 Complete primary cytoreduction

				18 (16.5)

		

		
				Geriatric assessment

				 

		

		
				 ≥3 comorbidities

				26 (23.9)

		

		
				 N comedications

				 

		

		
				  1-3

				32 (29.4)

		

		
				  4-6

				44 (40.4)

		

		
				  ≥7

				30 (27.5)

		

		
				 Functional assessment

				 

		

		
				  ADL score <6

				60 (55.0)

		

		
				  IADL score <25

				76 (69.7)

		

		
				 Nutritional assessment

				 

		

		
				  Albuminemia <35 g/L

				64 (58.8)

		

		
				  BMI <21 kg/m.

				24 (22.0)

		

		
				 Lymphocyte count <1 G/L

				27 (24.8)

		

		
				 Psychocognitive assessment

				 

		

		
				  MMS score <25

				32 (29.4)

		

		
				  HADS score >14

				40 (36.7)

		

		
				  GDS score >10

				39 (35.6)

		

		
				ADL: Activities of Daily Living; IADL: Instrumental Activities of Daily Living; BMI: Body Mass Index; ECOG: Eastern Cooperative Oncology Group; GDS: Geriatric Depression Scale; HADS: Hospital Anxiety and Depression Scale; MMS: Mini-Mental Scale

		

	

	TL ranged from 4.52 to 8.33 kilobases (kb) with a mean of 6.05 kb (SD 0.71 kb). A weak inverted linear correlation with age was demonstrated, with every 1-year increase in age associated with a 26-base pair decrease in mean TL, with a R. ratio of 0.0341 (Figure 1).
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	Figure 1. Telomere length repartition according to age.

	Longer TL in patients that completed their treatment and exhibited a better tolerance

	Since treatment completion is considered a meaningful short-term marker of patient outcome, we analyzed for a possible correlation between TL distribution and the fact that patients completed their treatment. In order to analyze variations in the non-gaussian distributions of human TL, we segregated the patients according to TL quartiles (Table 2). Patients with telomeres longer than 6.54 kb had a 52% higher chance of treatment completion than those with telomeres shorter than 5.77 kb (95%CI: 1.00-2.32, P=0.04). Thus, we can identify two groups of patients with different treatment completion rates according to their TL distribution: 80% (95%CI: 71% to 89%) in the group with telomeres longer than 5.77 kb (LT group) versus 59% (95%CI: 41% to 76%) in the group with shorter telomeres (ST group, P=0.02).

	Table 2. Association between telomere length parameters and patient outcomes

	
		
				 

				Telomere length

				Odds ratio for treatment completion (95%CI)

				P-value

				Hazard ratio for death (95%CI) (adjusted for FIGO stage)

				P-value

		

		
				TL mean

				6.05 kb

				0.56 (0.22-1.27)

				0.15

				1.42 (0.88-2.29)

				0.15

		

		
				TL median

				6.00 kb

				0.50 (0.21-1.2)

				0.11

				1.57 (0.98-2.51)

				0.06

		

		
				TL quartiles

				 

				1.50 (1.01-2.23)

				0.04

				0.82 (1.67-1.01)

				0.07

		

		
				 

				<5.77 kb

				0.36 (0.15-0.87)

				0.02

				1.49 (0.91-2.44)

				0.12

		

		
				 

				5.77-6.06 kb

				1.60 (0.54-4.74)

				0.38

				1.02 (0.59-1.77)

				0.94

		

		
				 

				6.06-6.54 kb

				1.28 (0.46-3.58)

				0.64

				0.97 (0.55-1.72)

				0.91

		

		
				 

				>6.54 kb

				2.08 (0.65-6.67)

				0.19

				0.62 (0.34-1.14)

				0.12

		

	

	Using the same cut-off of 5.77 kb, TL segregates the same two groups (i.e., ST vs LT) as having different outcomes in terms of tolerance. Serious adverse events were significantly more frequent in the ST group, with an odds ratio of 2.7 (P=0.02). Unplanned hospital admissions and grade 3-4 non-hematological toxicity also tended to be more frequent (Table 3). No significant difference between TL groups could be identified in terms of hematological toxicity, however blood cell counts were only routinely evaluated 1 day prior to chemotherapy.

	Table 3. TL repartition of vulnerability criteria and clinical end points between

	
		
				 

				Observed risk:short/long telomere group

				95% CI

				P-value

		

		
				Treatment completion

				0.36

				0.15-0.87

				0.020

		

		
				Serious Adverse Events

				2.69

				1.17-6.19

				0.019

		

		
				Unplanned hospital admissions

				2.14

				0.92-4.95

				0.076

		

		
				Grade ≥ 3 non-hematological toxicity

				2.04

				0.88-4.71

				0.095

		

		
				Grade ≥ 3 hematological toxicity

				1.32

				0.58-3.00

				0.51

		

		
				Geriatric vulnerability parameters:

		

		
				ADL score < 6

				1.78

				0.77-4.12

				0.17

		

		
				IADL score < 25

				1.31

				0.53-3.22

				0.56

		

		
				HADS score >14

				1.89

				0.82-4.33

				0.13

		

		
				Albuminemia <35 g/L

				1.27

				0.55-2.90

				0.57

		

		
				Lymphocytes <1 × 109/L

				1.76

				0.71-4.36

				0.22

		

		
				Geriatric vulnerability score

		

		
				GVS ≥3

				2.06

				0.90-4.70

				0.08

		

	

	Correlation between TL distribution and overall survival

	A survival analysis using Cox proportional hazards was conducted in order to evaluate the impact of telomere length on survival (Figure 2). Reasons for death were the most frequently related to cancer progression (105 patients), 2 patients died from treatment toxicity (septic shock), 4 from other reasons (colic perforation: 1; pulmonary embolism: 1, suspicion of pulmonary embolism: 1, major depression and denutrition: 1). After adjustment on FIGO stage (IV versus III), TL less than 6.00 kb was identified as a risk factor for premature death, with an HR of 1.57 (95%CI: 0.98 to 2.51, P=0.06). This pejorative trait staid robust in different models including FIGO stage and age [HR = 1.58 (95%CI: 0.99 to 2.53, P=0.06)], FIGO stage and GVS . 3 [HR = 1.56 (95%CI: 0.97 to 2.49, P=0.07)] and FIGO stage, GVS . 3 and age [HR = 1.57 (95%CI: 0.98 to 2.53, P=0.06)] (Supplementary Table 1).
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	Figure 2. Overall survival by TL groups, adjusted for FIGO stage.

	A tendency towards correlation between TL and geriatric vulnerability parameters

	We then tested the correlation between TL groups and geriatric vulnerability groups using the Geriatric Vulnerability Score [11]. Patients displaying at least three geriatric vulnerability parameters had a 2.94-fold higher risk of mortality in a univariate analysis (95%CI 1.79-4.84, P <0.0001) and this was 2.89-fold in a multivariate analysis after adjustment for FIGO stage (95%CI 1.74-4.78, P<0.0001). Despite the absence of a significant correlation with patients' characteristics except age (Supplementary Table 2) and any of the individual geriatric vulnerability parameters, TL groups and geriatric vulnerability groups showed a tendency towards correlation (P=0.08, Table 3).

	Discussion

	This analysis was planned as an ancillary study in the prospective multicentric Elderly Woman GINECO Trial 3. The working biological hypothesis - identifying TL as a putative prognostic biomarker in elderly cancer patients - was based on the pooled results of two prior studies, Elderly Woman GINECO Trials 1 and 2. In a retrospective multivariate analysis of overall survival (OS), several factors - FIGO stage IV, use of paclitaxel, age, emotional disorders and lymphopenia - were significantly associated with an increased risk of premature death ([10] and unpublished data). Moreover, a significant correlation was also shown between emotional disorders and lymphopenia. TL shortening, previously shown to correlate with age [13,14], lifestyle stress [15] and survival [10], is considered to be both an actor and a witness of the pathologic aging process. The myeloid skewing of hematological progenitors that accompanies aging [16] and telomere dysfunction [17,18] could explain why there is an increasing amount of clinical data proposing lymphopenia as a marker of pathologic aging [19].

	In previous epidemiological cohorts, a correlation was observed between TL and lifespan [8,20,21], aging associated diseases [7], and OS in healthy subjects [22]. These findings are of limited clinical use since associations only appear when large cohorts are investigated and the predictive value on an individual basis is poor. TL in blood leucocytes has also gained considerable interest as a potential biomarker of cancer risk, and direct measurement of TL and telomerase activity in tumors are considered to be cancer prognosis markers [23, 24].

	To our knowledge, this study is the first to investigate the impact of TL on treatment feasibility as an individual risk factor. In spite of a relatively small patient sample size (111 patients), we were able to control several putative biased errors typically associated with TL measurement in clinical trials [25–27]. All patients were female, post-menopausal, almost exclusively Caucasian and fell into a narrow age bracket (70 to 93 years). According our biologic working model, the impact of TL shortening was expected to be challenged by the competition between tumor-related and host-related covariates on patients' outcomes. Due to the context of the trial, the study did not include any external reference, as for example TL samples from non-cancer elderly patients, that would have evaluated the impact of the tumor itself on TL.

	Despite these constraints, in this particular oncologic context of ovarian cancer, our results reveal a clear correlation between TL and patient immediate outcomes. Indeed, TL distribution identified a subgroup of elderly patients with short telomeres who have a lower probability of completing treatment and a higher risk of severe adverse events and unplanned hospitalization This subgroup partially overlaps with patients identified as vulnerable according to the GVS [28]. However, the translation to clinical practice of these results might be difficult for the following reasons. Firstly and as usually for TL analyses, the cut-off between short and long telomeres were made a posteriori, being highly dependent on the technical conditions and the population studied. Moreover, different cut-offs separated the immediate outcomes (treatment completion, severe adverse events, unplanned hospital admissions) and the risk of premature death. Secondly, TL remained less discriminating than the GVS, based on simple clinical tests and routine bioassays, for immediate outcomes and survival. Finally, TL was estimated using the gold standard technique, namely the mean length terminal restriction fragments. Even if this technique is highly feasible, it is time-consuming and difficult to implement in routine analysis. In this respect, many of large epidemiological cohort analyses have preferred an alternative method of TL estimation, namely quantitative PCR [29,30]. However, this alternative technique suffers from a number of technical disadvantages, notably a high coefficient of variation and a lack of good reference standards, making it difficult to evaluate absolute TL [31]. Studies in mouse models have revealed that the number of dysfunctional telomeres is a more accurate factor than mean telomere length in the evolution of tissue pathology during aging [32]. Thus, evaluation of blood markers of dysfunctional telomeres [33] appear to be a promising method for telomere biology analysis in clinical trials [34, 35].

	In conclusion, our study demonstrates a correlation between telomere length and patient outcomes in an oncogeriatric context [34]. This finding opens the way for future work aimed at identifying telomere biomarkers which can be implemented in routine practice for outcome prediction as well as on the evaluation of the impact of cancer treatment - mainly chemotherapy - on biomarkers of aging.

	Materials and Methods

	Study design

	The Elderly Woman GINECO Trial 3 was an open-label phase II multicentric trial approved by the Independent Ethics Committee of Lyon University Hospital (EUDRACT No. 2006-005504-13). The study design, population and assessments have been described elsewhere [1]. Written informed consent was obtained from each patient and included authorization for collection of a blood sample for TL measurement. Patients were treated with up to six cycles of carboplatin AUC5 (5 mg/mL/min for 30 min every 3 weeks). In this ancillary study, TL at inclusion was evaluated, along with the impact of TL on patient outcome and the correlation between TL and geriatric covariates.

	Patient population

	Eligible patients were ≥70 years old, with a life expectancy ≥3 months, and histologically or cytologically proven epithelial FIGO stage III-IV ovarian cancer. Cytology consistent with ovarian cancer was considered sufficient if associated with both a CA125 rise and a radiological pelvic mass. Patients were considered ineligible if they had any prior malignancy except basal cell carcinoma or carcinoma in situ of the cervix or urinary bladder, prior chemo- or radiotherapy, serious medical or psychiatric illness that might affect treatment, major disturbance of hepatic parameters (alanine aminotransferase or aspartate aminotransferase >3 times the upper limit of normal, total bilirubin >2 times the upper limit of normal), severe renal insufficiency (creatinine clearance <30 mL/min), or abnormal hematological parameters (neutrophils <1.5 × 109/L, platelets <100 × 109/L). Patients with planned interval debulking surgery were also excluded.

	Assessments

	A multidimensional pre-inclusion geriatric assessment was performed at baseline. Data concerning the patient's medical charts, nutrition, functionality and an extensive psychocognitive assessment were collected, including comorbities, comedications, body mass index (BMI), serum albumin levels, and functional scores for Activities of Daily Living (ADL), Instrumental ADL (IADL), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and the Mini-Mental Scale (MMS).

	Patient outcomes of treatment completion rate (defined as receiving six courses of chemotherapy without premature discontinuation for death, treatment toxicity or tumor progression), survival, serious adverse events, unplanned hospital admissions, and grade ≥3 toxicities were recorded.

	The GVS was calculated for each patient as described previously [11]. This score is the addition of the following geriatric vulnerability parameters: ADL score <6, IADL score <25, HADS score >14, albuminemia <35 g/L, and lymphopenia <1 × 109/L.

	Measurement of telomere length

	A blood sample was collected at inclusion. DNA extraction was performed within 14 days using the PAXgene Blood DNA System (PreAnalytix GmbH, Hombrechtikon, Switzerland) according to the manufacturer's instructions. DNA integrity was assessed by electrophoresis on 1.0% agarose gels. DNA samples (4μg) were digested overnight with the restriction digest set Hinf1 (33 U) /Rsa1 (33 U) (New Englands Biolabs, France) and resolved using field inversion electrophoresis (FIGE) on FIGE Mapper System (Bio-Rad Life Science, France). Briefly, samples were precipited, resuspended in 12μl of H20 and run on 1% pulse field grade agarose gel (20cm × 13cm) containing 0.5X TBE at room temperature for 13h. The switch time ramp was between 0.1 and 0.5s (linear shape) with forward and reverse voltages of 160 and 100 V, respectively. A combination of two DNA molecular weight size standards was run on each gel : l Mix Marker 19 that spans 48.5 – 1.5kb and MassRuler™ DNA Ladder mix that spans 10 – 0.08kb (Thermo Scientific Molecular Biology Inc., France) and used to establish a standard curve (molecular size as a function of migration distance). Digested DNA were blotted to N+ Hybond membrane (GE Healthcare, France) by capillary transfer using SCC 20× transfer buffer and then UV cross-linked. Hybridization was carried out overnight at 65°C in hybridization buffer (0.5M NaPO4 pH7.2, 7% SDS, 0.1% BSA, 1mM EDTA) containing a digoxigenin (DIG)-labeled probe specific for telomeric repeats (400 bp of repeated 5.-T2AG3-3. motif). Membranes were then washed twice at room temperature in 2X SSC, 0.1% SDS (5min) and twice at 50°C in 0.2X SSC, 0.1% SDS (25min). Chemiluminescence detection was carried out according to TeloTAGGG Telomere Length Assay (Roche Applied Science, France) instructions. Telomeric Restriction Fragments (TRF) chemiluminescence signals were captured using a LAS-3000 Imager (FujiFilm Life Science, France) and images were processed using ImageJ software (http://rsb.info.nih.gov/ij/). The optical densities (OD) versus mean TRF length were calculated according to the formula (∑ ODi/ ∑(ODi/MWi), where ODi is the chemiluminescent signal and MWi is the length of the TRF at position i ([13] and Supplementary Figure 1). Measurements were performed on each sample at least twice in different gels and the mean was used for statistical analyses. Pearson's correlation coefficient for duplicates was 0.74, with an average coefficient of variation for pair sets of 7.3%. The laboratory conducting the TL measurement was blinded to all patient characteristics.

	Statistical analyses

	The sample size of 110 patients was calculated on the basis of the primary objective of the main part of the study (to confirm the impact of psychogeriatric covariates on OS) as reported elsewhere [12]. TL was analyzed both as a continuous ordinal variable and a categorical variable. For the former analysis, non-parametric two-sample Wilcoxon rank-sum tests were performed to evaluate the impact of TL on patient outcome. For the latter analysis, TL was transformed into quartiles, categorized into TL groups (shorter vs longer) and introduced as a dichotomous trait into linear regression models and Cox's proportional-hazards regression models. Different cut-offs were used based on the outcome under consideration. Survival curves were estimated using the Kaplan-Meier method and OS models were adjusted for FIGO stage (IV versus III). Odd ratios (ORs) and hazard ratios (HRs), 95% confidence intervals (CIs), and p values (P) were calculated. Analyses were performed using R statistical package (R Foundation for Statistical Computing, Austria) and Splus, version 6.2 (Insightful Corp., WA, USA).
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	Abstract

	Cancer cells grow in highly complex stromal microenvironments, which through metabolic remodelling, catabolism, autophagy and inflammation nurture them and are able to facilitate metastasis and resistance to therapy. However, these changes in the metabolic profile of stromal cancer-associated fibroblasts and their impact on cancer initiation, progression and metastasis are not well-known. This is the first study to provide a comprehensive proteomic portrait of the azathioprine and taxol-induced catabolic state on human stromal fibroblasts, which comprises changes in the expression of metabolic enzymes, myofibroblastic differentiation markers, antioxidants, proteins involved in autophagy, senescence, vesicle trafficking and protein degradation, and inducers of inflammation. Interestingly, many of these features are major contributors to the aging process. A catabolic stroma signature, generated with proteins found differentially up-regulated in taxol-treated fibroblasts, strikingly correlates with recurrence, metastasis and poor patient survival in several solid malignancies. We therefore suggest the inhibition of the catabolic state in healthy cells as a novel approach to improve current chemotherapy efficacies and possibly avoid future carcinogenic processes.

	Introduction

	Unlike normal healthy fibroblasts, aged or senescent fibroblasts are pro-tumorigenic [1]. Cellular damage, which is widely considered to be the general cause of aging, occasionally may provide cells with abnormal advantages that can eventually give rise to cancer. Thus, cancer and aging are two different faces of the same underlying process: the accumulation of cellular damage in cells and tissues over the years, which eventually become senescent. Indeed, accumulation of senescent cells has been detected after examination of aged tissues, and it contributes to tissue degeneration during aging [1]. Whether senescence of the stroma is sufficient to initiate tumorigenesis still remains unclear. However, senescent cells can have profound effects on the surrounding microenvironment, through the expression and secretion of a range of pro-inflammatory factors, which is known as the senescence-associated secretory phenotype (SASP). The onset of SASP may help explain the increased tumor incidence observed in aged individuals [2].

	The tumour stroma comprises the majority of the neoplastic mass and is mainly composed of fibroblasts [3]. Nevertheless, our comprehension of the tumour microenvironment is rather limited in comparison with that of cancer cells. The emergence of a reactive microenvironment via metabolic stress and inflammation fuels cancer cells, enables tumour growth and invasion, and leads to treatment failure [3–10]. However, the mechanisms by which the metabolic remodelling of cancer-associated stromal fibroblasts (CAFs) regulates the evolution of malignancy or even may control the susceptibility of incompletely transformed cells to become fully malignant are not fully understood.

	We have previously established that exposure to anticancer agents independently drives metabolic stress and catabolism, autophagy, senescence, myofibroblastic differentiation and production of the pro-inflammatory cytokine Interleukin 6 (IL6) in human stromal fibroblasts in vitro (Figure 1) [11]. Thus, according to our model, chemotherapy promotes the same effects in stromal fibroblasts as their interaction with cancer cells, the so-called catabolic tumour stroma phenotype, which creates an energy-rich, pro-inflammatory niche ideal for cancer development and possibly initiation.

	[image: Chemotherapy induces the catabolic tumour stroma phenotype]

	Figure 1. Chemotherapy induces the catabolic tumour stroma phenotype. ROS production and DNA damage induced by chemotherapy generate oxidative stress to stromal cells, which in turn brings about several changes in them such as differentiation into CAFs, activation of HIF1α, NFkB, TGFβ, STAT3 or JNK/AP1 signalling pathways, switch to aerobic glycolysis and loss of functional mitochondria, acquisition of an autophagic and senescent phenotype, and release of pro-inflammatory cytokines. Thus, these stromal fibroblasts acquire the catabolic tumour stroma phenotype.

	Despite the significant number of markers and secreted proteins already related to CAFs, there is little evidence of the contribution of chemotherapy-induced CAF transformation to metastasis or the growth of a second primary tumour after therapy. Indeed, only one report links secretion of factors associated with inflammation and cancer progression in therapy-damaged senescent fibroblasts with de novo tumorigenesis [12]. Thus, novel biomarkers are required to improve the prediction of recurrence, metastasis and, in particular, the prediction of therapy-related carcinogenesis. So far, there is one study investigating transcriptomic changes in stromal fibroblasts upon chemotherapeutic treatment, but none investigating phenotypic changes by proteomics [11]. Azathioprine and taxol (paclitaxel) are drugs widely used in chemotherapy for a variety of cancers and in particular taxol is used as the first-line chemotherapeutic agent for ovarian cancer [13–15]. In this study, we describe a strategy based on a label-free quantitative proteomic profiling of fibroblasts obtained after treatment with azathioprine or taxol, which allows us to measure numerous markers of the CAF phenotype. Likewise, the data presented here attempt to identify novel biomarkers of the catabolic remodelling in human stromal fibroblasts that are associated with chemoresistance, metastasis and second primary tumours by reporting their impact on cancer survival. The expression of several over-expressed proteins found in taxol-treated fibroblasts that are involved in metabolism, antioxidant response, autophagy, vesicle trafficking, protein degradation and myofibroblastic transformation correlate with poor prognosis in chemotherapy-treated breast, lung, gastric and ovarian cancer patients. We conclude that a strategy that targets constituents of the tumour microenvironment in combination with conventional chemotherapy may help improving treatment efficacy and avoiding the growth of future malignancies.

	Results

	To identify differentially regulated proteins upon chemotherapeutic treatment, hTERT-BJ1 fibroblasts were exposed for 48 h to either vehicle or sub-lethal concentrations of azathioprine (100 μM) or taxol (100 nM) (Figure S1), and cell lysates were subject to labelfree quantitative proteomics. Following protein digestion with trypsin, peptide fractions were processed on an LTQ-Orbitrap XL mass spectrometer. The experimental workflow used for the present study is depicted in Figure 2. Those peptides identified were further analyzed to find proteomic changes between chemotherapy-treated and vehicle-treated fibroblasts. To define differential regulation, those identified proteins that showed a fold change difference of 1.15 or higher, and p values of < 0.05 (ANOVA) compared to vehicle were considered. In the azathioprine-treated fibroblasts, 1640 proteins were identified as differentially expressed, from which 779 were upregulated and 861, down-regulated. In the taxol treatments, 2967 proteins were found as differentially expressed compared to vehicle, from which 1624 were up-regulated and 1343, down-regulated (Figure 3A).

	[image: Workflow for the comparative proteome analysis of hTERT-BJ1 fibroblasts treated with azathioprine, taxol or vehicle]

	Figure 2. Workflow for the comparative proteome analysis of hTERT-BJ1 fibroblasts treated with azathioprine, taxol or vehicle. Protein lysates were obtained from hTERT-BJ1 fibroblasts after 48 h treatment with azathioprine, taxol or vehicle. Peptides obtained after trypsin digestion were analysed via LC-MS/MS on an LTQ-Orbitrap XL mass spectrometer. Label-free quantitative proteomics was used to detect changes in protein abundances across vehicle-treated and drug-treated fibroblast extracts. The proteomics data sets were further analysed using Ingenuity Pathway Analysis and a cancer survival analysis tool (kmplot.com).

	[image: Overview of proteins and pathways identified as differentially regulated in the lysates of azathioprinetreated and taxol-treated fibroblasts relative to vehicle by Ingenuity Pathway Analysis]

	Figure 3. Overview of proteins and pathways identified as differentially regulated in the lysates of azathioprinetreated and taxol-treated fibroblasts relative to vehicle by Ingenuity Pathway Analysis. (A) Volcano plot representation of protein abundance changes in hTERT-BJ1 fibroblasts upon treatment with azathioprine and taxol compared to vehicle treatment. A total of 1640 differentially regulated proteins with fold changes ≥ 1.15 and p values < 0.05 were identified in azathioprine-treated fibroblasts, and 2967 differentially regulated proteins in taxol-treated fibroblasts. X axis represents log2(fold change). Y axis represents −log(p value). Non-significantly regulated proteins are shown in grey, in green, significantly down-regulated proteins and in red, significantly up-regulated proteins. (B) Subcellular localization of differentially regulated proteins identified in azathioprine and taxol treatments compared to vehicle treatment. (C) Classification of differentially regulated proteins identified in azathioprine and taxol treatments by type. Cellular enzymes account for 22.04% and 25.40% of total differentially regulated proteins identified in azathioprine treatment and taxol treatment, respectively. (D) Overlap of differentially regulated proteins identified in azathioprine and taxol treatments compared to vehicle treatment. Of all proteins identified by quantitative proteomics, 352 were proteins the expression of which was found altered in both treatments compared to vehicle. (E) Canonical pathways and (F) upstream regulators identified or predicted as altered in both treatment conditions compared to vehicle. A positive z score is indicated in orange and points towards an activation of the pathway, and a negative z score, in blue, indicates an inhibition of the pathway.

	To obtain additional functional insights into pathways that are differentially regulated in stromal fibroblasts upon treatment, bioinformatics analyses of our proteomics datasets were conducted. All differentially expressed proteins were analysed using Ingenuity Pathway Analysis (IPA) to seek altered canonical pathways and toxicity functions. IPA was able to analyse 633 proteins out of 1640 in the azathioprine-treated fibroblasts, and 841 out of 2967 proteins in the taxol-treated fibroblasts. We further examined the subcellular distribution and the nature of these differentially regulated proteins in azathioprine and taxol-treated fibroblasts. Over 80% of all proteins analyzed were intracellular, in particular cytoplasmic proteins (Figure 3B). Likewise, the largest portion of classified proteins, accounting for one fourth of all analysed proteins, were enzymes, over 8% of all proteins were transporter proteins, and over 7% were transcription regulators (Figure 3C). Finally, a comparison analysis revealed that 352 proteins were differentially regulated in both treatment conditions compared to vehicle (Figure 3D).

	Cellular pathways affected by chemotherapy in stromal fibroblasts

	1 Metabolism

	One of the major contributors to the aging process is mitochondrial dysfunction, which involves a decrease in the oxidative phosphorylation efficacy and an increase in the electron leakage resulting in reduced ATP generation [17]. Similarly, one of the hallmarks of the catabolic tumour stroma is the induction of metabolic stress that favours glycolysis to the detriment of mitochondrial metabolism. We have showed in a previous study that several chemotherapeutic agents, including azathioprine and taxol were able to stimulate stromal fibroblasts to consume more glucose and produce more lactate, which was released via enhanced MCT4 expression, hence increasing extracellular acidification (Figure 1). The cellular ATP content was also minor upon treatment suggesting a decrease in mitochondrial respiration [11].

	To validate that chemotherapy-induced glycolytic phenotype and to identify other cellular metabolic pathways potentially altered by chemotherapy, we searched the proteomic data for changes in the expression of metabolic enzymes. Of all differentially regulated proteins, 22.04% and 25.40% were actually enzymes in azathioprine-treated and taxol-treated fibroblasts, respectively (Figure 3C).

	The expression of most glycolytic enzymes was significantly altered (Table 1). Interestingly, most of the glycolytic enzymes that were found to be up-regulated are enzymes that perform an irreversible reaction in the glycolytic pathway and all down-regulated enzymes are reversible enzymes, able to perform the opposite reaction, hence also involved in gluconeogenesis. Curiously, LDHA, the enzyme involved in transforming pyruvate into lactate was found to be down-regulated in both treatments suggesting that pyruvate was further processed into the TCA cycle instead of being transformed into lactate.

	Table 1. Changes in the expression of enzymes involved in glucose metabolism after treatment with azathioprine and taxol for 48 h as measured by quantitative proteomics

	
		
				GLYCOLYSIS

				 

				Azathioprine

				Taxol

		

		
				Solute carrier family 2 (facilitated glucose transporter), member 1 (GLUT1)

				SLC2A1

				↑ 1.18

				 

		

		
				Hexokinase

				HK1

				 

				↑ 1.43

		

		
				HK2

				↑ 2.46

				 

		

		
				Glucose-6-phosphate isomerase

				GPI

				 

				↓ 1.27

		

		
				6-phosphofructokinase type C

				PFKP

				 

				↑ 1.56

		

		
				Fructose-bisphosphate aldolase A

				ALDOA

				↑ 2.10

				↓ 11.58

		

		
				Glyceraldehyde-3-phosphate dehydrogenase

				GAPDH

				↑ 1.90

				↑ 1.89

		

		
				Triosephosphate isomerase 1

				TPI1

				 

				↑ 1.33

		

		
				Phosphoglycerate kinase 1

				PGK1

				 

				↓ 1.58

		

		
				Phosphoglycerate mutase

				PGAM1

				 

				↓ 1.38

		

		
				PGAM4

				↓ 1.45

				 

		

		
				Enolase 1

				ENO1

				↓ 1.37

				 

		

		
				Pyruvate kinase

				PKM

				 

				↑ 1.65

		

		
				POST-GLYCOLYSIS PROCESSES

				 

				Azathioprine

				Taxol

		

		
				L-lactate dehydrogenase A chain

				LDHA

				↓ 1.47

				↓ 1.46

		

		
				Monocarboxylate transporter 4 (MCT4)

				SLC16A3

				 

				↑ 2.21

		

		
				Pyruvate dehydrogenase

				PDHB

				↓ 1.20

				↓ 1.40

		

		
				GLUCONEOGENESIS

				 

				Azathioprine

				Taxol

		

		
				Glucose-6-phosphate isomerase

				GPI

				 

				↓ 1.27

		

		
				Aldolase A, fructose-bisphosphate

				ALDOA

				↑ 2.10

				↓ 11.57

		

		
				Glyceraldehyde-3-phosphate dehydrogenase

				GAPDH

				↑ 1.90

				↑ 1.89

		

		
				Phosphoglycerate kinase 1

				PGK1

				 

				↓ 1.58

		

		
				Phosphoglycerate mutase

				PGAM1

				 

				↓ 1.38

		

		
				PGAM4

				↓ 1.45

				 

		

		
				Enolase 1

				ENO1

				↓ 1.37

				 

		

		
				Malate dehydrogenase

				MDH1

				 

				↓ 1.80

		

		
				MDH2

				 

				↓ 1.23

		

		
				Malic enzyme 2, NAD(+)-dependent, mitochondrial

				ME2

				 

				↓ 1.62

		

		
				PENTOSE PHOSPHATE PATHWAY

				 

				Azathioprine

				Taxol

		

		
				Glucose-6-phosphate dehydrogenase

				G6PD

				↓ 2.03

				↑ 2.69

		

		
				H6PD

				↑ 1.46

				 

		

		
				6-phosphogluconolactonase

				PGLS

				 

				↑ 1.54

		

		
				Phosphogluconate dehydrogenase

				PGD

				 

				↓ 1.57

		

		
				Transketolase

				TKT

				↓ 1.88

				 

		

		
				Transaldolase

				TALDO

				↑ 2.13

				 

		

		
				HEXOSAMINE BIOSYNTHESIS PATHWAY

				 

				Azathioprine

				Taxol

		

		
				Glutamine-fructose-6-phosphate transaminase 1

				GFPT1

				 

				↑ 1.36

		

		
				Glucosamine-6-phosphate deaminase 1

				GNPDA1

				 

				↑ 2.46

		

		
				Chemotherapy increased the expression of several enzymes involved in glycolysis, pentose phosphate pathway, and hexosamine biosynthesis. Enzymes that show amplified expression after treatment are shown in red, and enzymes that are decreased are shown in green. Number indicates the fold increase or fold decrease in protein expression in chemotherapy-treated versus vehicle-treated hTERT-BJ1 fibroblasts.

		

	

	 

	 

	 

	 

	 

	Nevertheless, LDH is an enzyme that exhibits feedback inhibition, by which high lactate concentrations can suppress it. In fact, MCT4, the monocarboxylate transporter responsible for the secretion of lactate, turned out to be up-regulated in taxol-treated hTERT-BJ1 cells, and regarding the further processing of pyruvate into acetyl-CoA and the citric acid (TCA) cycle, the expression of practically all enzymes were found to be down-regulated in taxol-treated fibroblasts compared to vehicle indicating a dramatic down-regulation of mitochondrial metabolism. A similar down-regulation trend was observed in numerous proteins involved in all oxidative phosphorylation complexes (Table 2) and mitochondrial function proteins (Table S1). Finally, several enzymes involved in mitochondrial fatty acid β-oxidation were also identified as down-regulated, and a few enzymes involved in fatty acid biosynthesis, up-regulated (Table S2). Other metabolic changes included enzymes of the oxidative pentose phosphate pathway, responsible for the generation of antioxidant power (NADPH), the hexosamine synthesis pathway, accountable for the production of amino sugars used for the synthesis of glycoproteins, glycolipids and proteoglycans, and a few enzymes involved in the generation of ketone bodies (Table 1 and 5). Figure 4A summarises all changes observed in the expression of metabolic enzymes in taxol-treated fibroblasts and their contribution to different cellular metabolic pathways.

	Table 2. Changes in the expression of enzymes involved in mitochondrial glucose metabolism after treatment with azathioprine and taxol for 48 h as measured by quantitative proteomics

	
		
				TCA CYCLE

				 

				Azathioprine

				Taxol

		

		
				Citrate synthase, mitochondrial

				CS

				 

				↓ 1.52

		

		
				Aconitate hydratase

				ACO2

				↑ 1.41

				↓ 1.23

		

		
				Dihydrolipoyl dehydrogenase

				DLD

				 

				↓ 1.48

		

		
				Alpha-ketoglutarate dehydrogenase complex dihydrolipoyl succinyltransferase

				DLST

				↓ 1.23

				↓ 1.70

		

		
				2-oxoglutarate dehydrogenase

				OGDH

				↓ 1.37

				 

		

		
				Beta-succinyl CoA synthetase

				SUCLA2

				 

				↓ 1.25

		

		
				Succinate dehydrogenase complex

				SDHA

				 

				↓ 2.43

		

		
				SDHB

				↓ 1.51

				 

		

		
				Fumarate hydratase

				FH

				 

				↓1.27

		

		
				Malate dehydrogenase

				MDH1

				 

				↓ 1.80

		

		
				MDH2

				 

				↓ 1.22

		

		
				OXIDATIVE PHOSPHORYLATION

				 

				Azathioprine

				Taxol

		

		
				NADH dehydrogenase (complex I)

				NDUFV1

				 

				↑ 1.54

		

		
				NDUFV2

				 

				↓ 1.45

		

		
				NDUFS1

				 

				↓ 1.73

		

		
				NDUFS7

				 

				↓ 1.31

		

		
				NDUFB10

				 

				↓ 1.29

		

		
				Succinate dehydrogenase complex (complex II)

				SDHA

				 

				↓ 2.43

		

		
				SDHB

				↓ 1.51

				 

		

		
				Coenzyme Q – cytochrome c reductase (complex III)

				CYCS

				 

				↓ 1.61

		

		
				UQCRC1

				 

				↓ 1.42

		

		
				UQCRB

				 

				↑ 1.62

		

		
				Cytochrome c oxidase (complex IV)

				COX17

				 

				↓ 2.00

		

		
				COX6C

				 

				↓ 1.62

		

		
				COX6A1

				↑ 1.47

				 

		

		
				COX5A

				 

				↓ 1.39

		

		
				COX5B

				↑ 1.37

				 

		

		
				ATP synthase (complex V)

				ATP5A1

				↓ 1.51

				↓ 1.16

		

		
				ATP5F1

				↓ 1.70

				↓ 1.51

		

		
				ATP5H

				↑ 1.56

				 

		

		
				ATP5J

				↑ 1.36

				 

		

		
				ATP5B

				 

				↑ 2.36

		

		
				Taxol treatment remarkably decreased the expression of enzymes of the TCA cycle and oxidative phosphorylation. Enzymes that show increased expression after treatment are shown in red, and enzymes that are decreased are shown in green. Number indicates the fold increase or fold decrease in protein expression in chemotherapy-treated versus vehicle-treated hTERT-BJ1 fibroblasts.

		

	

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	[image: Taxol treatment alters several cellular metabolic pathways and induces autophagy and senescence in hTERTBJ1 fibroblasts]

	Figure 4. Taxol treatment alters several cellular metabolic pathways and induces autophagy and senescence in hTERTBJ1 fibroblasts. (A) Summary of changes observed in the expression of numerous metabolic enzymes after treatment with taxol for 48 h, as measured by quantitative proteomics. Taxol treatment increased the expression of enzymes involved in glycolysis, pentose phosphate, and hexosamine biosynthesis and lipid synthesis pathways in detriment of those involved in gluconeogenesis and mitochondrial metabolism (TCA cycle, oxidative phosphorylation, and mitochondrial β–oxidation). Enzymes that show amplified expression after taxol treatment are shown in red, and enzymes that are decreased are shown in green. Cellular metabolic pathways that may be up-regulated are boxed in red, and those that may be down-regulated are boxed in green. (B) Summary of changes observed in the expression of numerous autophagy and senescence-related proteins after treatment with taxol for 48 h, as measured by quantitative proteomics. Taxol amplified the expression of proteins involved in senescence, autophagy, mitophagy and vesicle formation and trafficking. Proteins that show increased expression after treatment are shown in red. (C) Ingenuity Pathway Analysis of azathioprine and taxol-treated hTERT-BJ1 fibroblasts predicted p53, TFEB and CCL5 to be activated in these cells.

	IPA revealed glycolysis, gluconeogenesis and pentose phosphate pathway as altered canonical pathways in both azathioprine and taxol treatments. Similarly, IPA revealed mitochondrial dysfunction, TCA cycle, and PPARα/RXRα activation, responsible for ketone body production and fatty acid metabolism, as two of the top canonical pathways affected by both treatments, and oxidative phosphorylation and fatty acid β-oxidation, as altered pathways also in taxol-treated cells (Figure 5 and Table S5). The toxicity impact of both drugs extensively involved mitochondrial dysfunction and damage, and also fatty acid metabolism and PPARα/RXRα activation (Figure 6 and Table S6).

	[image: Pathway analysis of differentially expressed proteins in hTERT-BJ1 fibroblasts treated with azathioprine or taxol compared to vehicle-treated cells]

	Figure 5. Pathway analysis of differentially expressed proteins in hTERT-BJ1 fibroblasts treated with azathioprine or taxol compared to vehicle-treated cells. Ingenuity Pathway Analysis showed canonical pathways significantly altered by the proteins differentially expressed in hTERT-BJ1 fibroblasts treated with azathioprine or taxol (P < 0.05). The p value for each pathway is indicated by the bar and is expressed as −1 times the log of the p value. Green coloured bars show a predicted inhibition of the pathway (z score <-1.9) and red coloured bars indicate a predicted activation of the pathway (z score > 1.9).

	[image: Toxicity effects of differentially expressed proteins in hTERT-BJ1 fibroblasts treated with azathioprine or taxol compared to vehicle-treated cells]

	Figure 6. Toxicity effects of differentially expressed proteins in hTERT-BJ1 fibroblasts treated with azathioprine or taxol compared to vehicle-treated cells. Ingenuity Pathway Analysis showed toxicity functions significantly enriched by the proteins differentially expressed in hTERT-BJ1 fibroblasts treated with azathioprine or taxol (P < 0.05). The p value for each pathway is indicated by the bar and is expressed as −1 times the log of the p value.

	To recapitulate, the previously identified chemotherapy-induced metabolic stress in stromal fibroblasts is clearly detected by quantitative proteomics and it represents not only an increase in glycolysis and a reduction in mitochondrial function, as observed in our previous study, but also affects other metabolic pathways, including hexosamine synthesis and pentose phosphate pathways, fatty acid metabolism and ketogenesis.

	2 Antioxidant response and stress-related pathways

	Another feature of the catabolic tumour stroma is the induction of oxidative stress, which can be induced by chemotherapy in cancer cells and also healthy tissues (Figure 1) [18, 19]. Particularly, we previously showed increased ROS production and antioxidant response in hTERT-BJ1 fibroblasts after treatment with taxol [11]. We have seen in this study that several enzymes of the oxidative branch of the pentose phosphate pathway, which is responsible for the generation of antioxidant power (NADPH), were up-regulated in chemotherapy-treated stromal fibroblasts. Thus, we sought for other antioxidant response proteins in the proteomics datasets. The expression of numerous proteins involved in Nrf2-mediated antioxidant response and other antioxidant proteins was significantly altered, in most cases up-regulated (Table 3), suggesting an activation of the pathway in both azathioprine and taxol-treated hTERT-BJ1 fibroblasts, although it was found to be notably higher in taxol-treated cells.

	Table 3. Changes in the expression of Nrf2-target proteins and other proteins involved in the antioxidant response after treatment with azathioprine and taxol for 48 h as measured by quantitative proteomics and indicated by IPA analysis

	
		
				NRF2-MEDIATED ANTIOXIDANT RESPONSE

				 

				Azathioprine

				Taxol

		

		
				ATP-binding cassette, sub-family C (CFTR/MRP), member 1

				ABCC1

				↓ 2.34

				 

		

		
				Actin, alpha 2, smooth muscle, aorta

				ACTA2

				↑ 1.34

				↑ 1.78

		

		
				Actin, beta

				ACTB

				 

				↑ 1.30

		

		
				Actin, alpha, cardiac muscle 1

				ACTC1

				↑ 1.75

				↑ 1.20

		

		
				Carbonyl reductase 1

				CBR1

				 

				↑ 1.29

		

		
				Chaperonin containing TCP1, subunit 7 (eta)

				CCT7

				↑ 2.89

				 

		

		
				DnaJ (Hsp40) homolog

				DNAJA1

				↑ 1.61

				↓ 9.61

		

		
				DNAJB11

				↓ 1.34

				 

		

		
				DNAJC8

				↓ 1.79

				↓ 1.58

		

		
				DNAJC13

				 

				↓ 4.30

		

		
				Epoxide hydrolase 1, microsomal (xenobiotic)

				EPHX1

				 

				↑ 2.06

		

		
				Ferritin, light polypeptide

				FTL

				↑ 1.61

				↑ 6.97

		

		
				Glutathione S-transferase

				GSTK1

				 

				↑ 1.34

		

		
				GSTO1

				 

				↑ 1.57

		

		
				GSTP1

				 

				↓ 1.53

		

		
				Heme oxygenase (decycling) 1

				HMOX1

				↑ 4.48

				↑ 2.83

		

		
				Mitogen-activated protein kinase 3

				MAPK3

				↑ 1.54

				 

		

		
				Peptidylprolyl isomerase B (cyclophilin B)

				PPIB

				↑ 1.60

				↑ 1.36

		

		
				Peroxiredoxin 1

				PRDX1

				 

				↑ 1.68

		

		
				Protein kinase C, alpha

				PRKCA

				↑ 1.96

				 

		

		
				Related RAS viral (r-ras) oncogene homolog

				RRAS

				 

				↑ 2.44

		

		
				Superoxide dismutase 1, soluble

				SOD1

				 

				↑ 1.48

		

		
				Superoxide dismutase 2, mitochondrial SOD2

				 

				↑ 1.69

				↓ 1.87

		

		
				Sequestosome 1

				SQSTM1

				 

				↑ 3.50

		

		
				Thioredoxin TXN

				 

				 

				↑ 2.75

		

		
				Thioredoxin reductase 1

				TXNRD1

				 

				↑ 2.66

		

		
				Valosin-containing protein VCP

				 

				↓ 1.29

				 

		

		
				ANTIOXIDANTS (OTHER)

				 

				Azathioprine

				Taxol

		

		
				Aminopeptidase N

				ANPEP

				↑ 1.78

				↑ 1.56

		

		
				Glutaredoxin-1

				GLRX

				 

				↑ 1.25

		

		
				Glutathione peroxidase

				GPX8

				 

				↓ 1.85

		

		
				Peroxidasin

				PXDN

				 

				↑ 3.57

		

		
				PRDX4

				↑ 1.50

				 

		

		
				Peroxiredoxin

				PRDX5

				 

				↑ 1.33

		

		
				PRDX6

				 

				↓ 1.23

		

		
				Chemotherapy mostly increased the expression of proteins involved in antioxidant response, mainly in taxol-treated fibroblasts. Proteins that show amplified expression after treatment are shown in red, and proteins that are decreased are shown in green. Number indicates the fold increase or fold decrease in protein expression in chemotherapy-treated versus vehicle-treated hTERT-BJ1 fibroblasts.

		

	

	 

	 

	 

	 

	 

	 

	 

	A higher presence of antioxidant response proteins was further confirmed using IPA, which revealed Nrf2-mediated antioxidant response to be one of the top canonical pathways affected by azathioprine and taxol treatments, although z score values demonstrated a significant activation of this pathway exclusively in taxol-treated fibroblasts. Similarly, taxol-treated cells showed altered glutathione and thioredoxin antioxidant pathways (Figure 3E and 5, and Table S5). The toxicity of these chemotherapeutic drugs also involved oxidative stress. HIF signalling, which is activated in response to stress and a central player in the regulation of cellular metabolism, was also identified as a toxic effect of azathioprine treatment (Figure 6 and Table S6), and had been previously identified as activated in hTERT-BJ1 fibroblasts treated with azathioprine and taxol [11]. Thus, proteomics analysis clearly detects an activation of the antioxidant response after treatment with chemotherapy.

	3 Myofibroblastic differentiation

	Cancer-associated fibroblasts are commonly identified by their expression of alpha smooth muscle actin (αSMA) [20] (Figure 1). Indeed, we previously showed up-regulation of αSMA by immunoblotting in taxol-treated hTERT-BJ1 [11]. Quantitative proteomics profiling of azathioprine and taxol-treated hTERT-BJ1 fibroblasts also revealed a significantly higher presence of αSMA and many other myofibroblastic markers, such as fibroblast activation protein (FAP) or vimentin, as well as muscle-related proteins compared to the vehicle-treated control (Table 4).

	Table 4. Changes in the expression of proteins involved in myofibroblastic transformation and muscle-related proteins after treatment with azathioprine and taxol for 48 h as measured by quantitative proteomics

	
		
				CANCER-ASSOCIATED FIBROBLAST AND MUSCLE-RELATED PROTEINS

				 

				Azathioprine

				Taxol

		

		
				Actin, alpha, cardiac muscle

				ACTC1

				↑ 1.75

				↑ 1.20

		

		
				Actin, alpha 2, aortic smooth muscle (αSMA)

				ACTA2

				↑ 1.34

				↑ 1.78

		

		
				Caldesmon

				CALD1

				 

				↑ 2.49

		

		
				Calponin

				CNN1

				 

				↑ 2.76

		

		
				CNN2

				↑ 1.81

				↑ 2.76

		

		
				CNN3

				↓ 1.28

				↑ 2.46

		

		
				Desmin

				DES

				↑ 1.21

				↓ 1.79

		

		
				Dysferlin

				DYSF

				 

				↑ 1.24

		

		
				Fibroblast activation protein

				FAP

				↑ 1.74

				↑ 1.56

		

		
				Fibronectin 1

				FN1

				↑ 2.02

				↑ 2.03

		

		
				Filamin

				FLNA

				↓ 1.92

				↑ Infinity

		

		
				FLNB

				↓ 1.23

				 

		

		
				FLNC

				 

				↑ 1.56

		

		
				Moesin

				MSN

				↑ 1.37

				↑ 1.60

		

		
				Myoferlin MYOF

				 

				↑ 4.15

				↑ 1.95

		

		
				Myosin

				MYH4

				 

				↑ 1.62

		

		
				MYH9

				↑ 1.64

				 

		

		
				MYH10

				↑ 1.37

				 

		

		
				MYH11

				↑ 1.47

				↑ 1.90

		

		
				MYH14

				↓ 3.06

				 

		

		
				MYO1B

				 

				↓ 1.72

		

		
				MYO1C

				↑ 2.21

				↑ 1.59

		

		
				MYO10

				↑ 1.37

				 

		

		
				MYO18B

				↓ 1.50

				↑ 2.62

		

		
				Myosin, light polypeptide kinase

				MYLK

				 

				↑ 1.88

		

		
				Myosin phosphatase Rho interacting protein

				MPRIP

				 

				↑ 1.45

		

		
				Myosin regulatory light polipeptides

				MYL6

				↑ 1.33

				↑ 1.74

		

		
				MYL9

				 

				↑ 1.77

		

		
				MYL12A

				 

				↑ 2.21

		

		
				Palladin

				PALLD

				 

				↑ 3.88

		

		
				Platelet-derived growth factor receptor, beta

				PDGFRB

				 

				↑ 1.59

		

		
				Prolyl 4-hydroxylase

				P4HA1

				 

				↑ 3.14

		

		
				P4HA2

				↓ 1.32

				↓ 2.50

		

		
				P4HB

				↓ 1.76

				 

		

		
				Talin

				TLN1

				↑ 1.46

				↑ 2.95

		

		
				TLN2

				↓ 1.80

				 

		

		
				Transgelin 2

				TAGLN2

				↑ 1.93

				 

		

		
				Tropomyosin

				TPM1

				↓ 2.63

				↓ 4.23

		

		
				TPM2

				↑ 1.24

				 

		

		
				TPM3

				↑ 1.43

				 

		

		
				TPM4

				 

				↑ 2.12

		

		
				Vimentin

				VIM

				↑ 1.72

				↑ 1.76

		

		
				Chemotherapy enormously increased the expression of proteins involved in CAF transformation. Proteins that show amplified expression after treatment are shown in red, and proteins that are decreased are shown in green. Number indicates the fold increase or fold decrease in protein expression in chemotherapy-treated versus vehicle-treated hTERT-BJ1 fibroblasts.

		

	

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	Myofibroblasts are mostly responsible for the presence of fibrosis [21], and the toxicity functions of these chemotherapeutic drugs involved tissue fibrosis, as analysed by IPA (Figure 6 and Table S6). Therefore, chemotherapy can independently induce the differentiation of hTERT-BJ1 fibroblasts into cancer-associated fibroblasts, which can be detected by a numerous increase of myofibroblastic markers in quantitative proteomics analysis.

	4 Autophagy and senescence

	Autophagy and senescence represent a common response to stresses such as exposure to DNA-damaging exogenous cytotoxic agents, including chemotherapy or radiation [22, 23]. Indeed our previous study indicated that azathioprine and taxol induce autophagic vesicle formation and increase β-galactosidase activity in stromal fibroblasts [11]. Thus, to further examine changes in autophagy and senescence upon chemotherapeutic exposure, the differential expression of several autophagy, mitophagy and lysosomal markers was analysed using the proteomics datasets. Numerous autophagy and senescence markers such as sequestrosome 1, also known as p62, cathepsin B or the lysosomal enzyme β-galactosidase were found to be up-regulated in either azathioprine or taxol treatments (Table 5). In addition, DNM1L, a protein involved in mitochondrial fission, was up-regulated in taxol-treated hTERT-BJ1 fibroblasts, and OPA1, a protein involved in mitochondrial fusion, was down-regulated in azathioprine-treated cells. Likewise, VAT1, a vesicle membrane protein that inhibits mitochondrial fusion, was up-regulated in both treatments, suggesting that mitophagy might be also activated in response to chemotherapy (Table 5 and Table S3).

	Table 5. Changes in the expression of autophagy, mitophagy and senescence markers and ketogenesis enzymes after treatment with azathioprine and taxol for 48 h as measured by quantitative proteomics

	
		
				AUTOPHAGY MARKERS

				 

				Azathioprine

				Taxol

		

		
				Cathepsin

				CATB

				↑ 1.56

				↑ 1.55

		

		
				CATD

				 

				↑ 1.62

		

		
				Lysosomal-associated membrane protein 1

				LAMP1

				↑ 1.55

				 

		

		
				Microtubule-associated protein 1 light chain 3 beta

				MAP1LC3B

				 

				↑ 1.58

		

		
				Sequestrosome 1 (p62)

				SQSTM1

				 

				↑ 3.50

		

		
				MITOPHAGY MARKERS

				 

				Azathioprine

				Taxol

		

		
				Dynamin-1-like protein (fission)

				DNM1L

				 

				↑ 1.71

		

		
				Dynamin-like 120 kDa protein, mitochondrial (fusion)

				OPA1

				↓ 1.44

				 

		

		
				LYSOSOMAL PROTEINS (OTHER)

				 

				Azathioprine

				Taxol

		

		
				Cation-dependent mannose-6-phosphate receptor

				M6PR

				 

				↑ 2.38

		

		
				Cation-independent mannose-6-phosphate receptor

				IGF2R

				↑ 3.58

				↑ 1.88

		

		
				Galactosidase, beta 1

				GLB1

				↑ 1.53

				 

		

		
				Late endosomal/lysosomal adaptor, MAPK and mTOR activator 1

				LAMTOR1

				↑ 1.85

				 

		

		
				Lysosome membrane protein 2

				SCARB2

				↑ 1.63

				↑ 1.49

		

		
				N-acetylglucosamine-6-sulfatase

				GNS

				 

				↑ 1.43

		

		
				Prenylcysteine oxidase 1

				PCYOX1

				 

				↑ 1.55

		

		
				Prosaposin

				PSAP

				↑ 2.21

				↑ 2.13

		

		
				KETOGENESIS

				 

				Azathioprine

				Taxol

		

		
				Hydroxyacyl-CoA dehydrogenase

				HADH

				 

				↓ 1.43

		

		
				HADHA

				↓ 1.57

				 

		

		
				HADHB

				↑ 1.36

				 

		

		
				3-Hydroxymethyl-3-methylglutaryl-CoA lyase

				HMGCL

				↑ 1.67

				 

		

		
				Chemotherapy incremented the expression of proteins involved in autophagy and senescence. Proteins that show increased expression after treatment are shown in red, and proteins that are decreased are shown in green. Number indicates the fold increase or fold decrease in protein expression in chemotherapy-treated versus vehicle-treated hTERT-BJ1 fibroblasts.

		

	

	 

	 

	 

	During autophagy, protein and lipid degradation occur, the latter leading to the generation of ketone bodies. A long list of up-regulated proteins involved in vesicle formation and trafficking, in protein ubiquitination pathway and proteasomal degradation, and a few enzymes involved in ketogenesis were also identified (Table 5, S3 and S4). The boost in vesicle formation and trafficking proteins could explain the greater presence of enzymes involved in fatty acid synthesis and hexosamine biosynthesis (Figure 4A and Table 1 and S2). The observed effects of taxol treatment on autophagy, mitophagy and senescence are summarised in Figure 4B.

	IPA analysis confirmed an alteration of ketogenesis in fibroblasts exposed to azathioprine (Figure 5 and Table S5). IPA also showed a robust inhibitory effect of azathioprine and taxol on EIF2 signalling, responsible for protein synthesis, as measured by z score, and also revealed an alteration in the regulation of eIF4 and p70S6K signaling and in the protein ubiquitination pathway. Finally, PPARα/RXRα activation, Rho, caveolar and clathrin-mediated signalling pathways, all involved in vesicle trafficking and motility, and the mTOR signalling, known for its role in autophagy, mitochondrial metabolism and lipid metabolism, as well as cytoskeleton dynamics, were some of the top canonical pathways altered by chemotherapy, (Figure 3E, 5, and Table S5). Interestingly, p53, known mediator of senescence, was predicted to be activated in both azathioprine-treated and taxol-treated hTERT-BJ1 cells according to IPA, and TFEB, a transcriptor factor that coordinates the expression of lysosomal hydrolases, membrane proteins and genes involved in autophagy, was also predicted to be activated by taxol treatment (Figure 3F and 4C). Our previous study also reported an increased expression of p53 in hTERT-BJ1 fibroblasts treated with azatioprine and taxol by immunoblotting [11].

	Thus, quantitative proteomics analysis reveals a higher presence of markers of autophagy and senescence and proteins involved in protein degradation and vesicle trafficking in hTERT-BJ1 fibroblasts, upon treatment.

	5 Inflammation

	Senescent cells dramatically alter their secretome, enriching it with pro-inflammatory cytokines and matrix metalloproteinases. This senescence-associated secretory phenotype (SASP) can lead to chronic inflammation, which is a hallmark of aging [17]. Stromal fibroblasts secrete inflammatory cytokines when in contact with cancer cells [24]. Chemotherapy is also able to induce cytokine production in healthy tissues [12], and in particular taxol treatment induces IL6 secretion in stromal fibroblasts (Figure 1) [11]. STAT3, a known inducer of inflammation in response to stress [25, 26] was found significantly up-regulated in both azathioprine (1.69 fold increase) and taxol treatments (2.35 fold increase) relative to vehicle. STAT3 signalling was found to be activated in response to taxol also in our previous study [11].

	Interestingly, several pathways involved in the inflammatory process such as IL8, acute phase response, leukocyte extravasation or Fcγ receptor-mediated phagocytosis signalling were amongst altered canonical pathways in both azathioprine-treated and taxol-treated hTERT-BJ1 cells relative to vehicle, according to IPA. N-formyl-Met-Leu-Phe (fMLP) signalling was also found to be altered in taxol-treated fibroblasts (Figure 3E and 5 and Table S5). Most of these pathways were clearly activated in taxol-treated fibroblasts as indicated by z score values, suggesting an induction of the inflammatory response in chemotherapy-treated stromal fibroblasts. Likewise, the chemokine (C-C motif) ligand 5 (CCL5 or RANTES), which plays a role in recruiting leukocytes into inflammatory sites, was identified as an upstream regulator in both treatments, particularly activated in taxol-treated fibroblasts (Figure 3F and 4C). Finally, acute phase response, which occurs soon after the onset of an inflammatory process, was identified as one of the toxic effects of both drugs (Figure 6 and Table S6). Therefore, pathway analysis of the proteomics results indicates an induction of the inflammatory response in stromal fibroblasts after exposure to chemotherapy.

	Differentially up-regulated proteins in taxol-treated fibroblasts correlate with recurrence, metastasis and poor cancer survival

	To further investigate the clinical implications of our proteomics datasets, we decided to test the impact of over-expressed proteins in taxol-treated hTERT-BJ1 fibroblasts in cancer prognosis. To do so, we used an on-line survival analysis tool that uses microarray gene expression data from multiple studies on breast, ovarian, lung and gastric cancer [16], which was suitable to our purpose since taxol is a chemotherapeutical drug currently used as therapy for most of these malignancies. Only those proteins with a fold change difference of 1.75 or higher and p values of < 0.05 (ANOVA) compared to vehicle were used for survival analyses. The expression of several proteins was found to correlate with survival in breast, ovarian, gastric and lung cancer patients. In particular, high expression of ubiquitin-like modifier activating enzyme 1 (UBA1), implicated in protein catabolism and degradation, showed a striking correlation with poor relapse-free survival, distant metastasis-free survival and overall survival in breast cancer patients previously treated with chemotherapy (425, 122 and 69 patients, respectively) (Figure 7A). The same correlation was not observed when patients who did not receive systemic treatment were considered (1000, 533 and 375 patients, respectively) (Figure S2A). Similarly, high expression of UBA1 correlated with poor overall survival in lung and gastric cancer patients previously treated with chemotherapeutic drugs (176 and 153 patients, respectively), and with progression-free survival in ovarian cancer patients particularly treated with paclitaxel (229 patients) (Figure 8A). Once more, the correlation was lost when patients who did not receive systemic treatment were considered in lung cancer (227 patients) or when patients who underwent only surgery were examined in gastric cancer (174 patients) (Figure S3A). No data from untreated ovarian cancer patients was available.

	[image: Clinical correlations of UBA1 expression and the UBA1, PSMC5, IGF2R, VAT1, HMOX1, CNN2, TLN1, GNPDA1, G6PD and FASN signature in chemotherapy-treated breast cancer patients]

	Figure 7. Clinical correlations of UBA1 expression and the UBA1, PSMC5, IGF2R, VAT1, HMOX1, CNN2, TLN1, GNPDA1, G6PD and FASN signature in chemotherapy-treated breast cancer patients. (A) Correlations of UBA1 expression with relapse-free survival, distant metastasis-free survival and overall survival in breast cancer. (B) Correlations of the catabolic stroma signature with relapse-free survival, distant metastasis-free survival and overall survival in breast cancer. All graphs are calculated using microarray data from 425, 122 and 69 chemotherapy-treated breast cancers, respectively, determined using an online survival analysis tool. Kaplan-Meier correlations are plotted for high (above median, in red) and low (below median, in black) gene expression.

	[image: Clinical correlations of UBA1 expression and the UBA1, PSMC5, IGF2R, VAT1, HMOX1, CNN2, TLN1, GNPDA1, G6PD and FASN signature in chemotherapy-treated lung, gastric and ovarian cancer patients]

	Figure 8. Clinical correlations of UBA1 expression and the UBA1, PSMC5, IGF2R, VAT1, HMOX1, CNN2, TLN1, GNPDA1, G6PD and FASN signature in chemotherapy-treated lung, gastric and ovarian cancer patients. (A) Correlations of UBA1 expression with overall survival in lung and gastric cancer, and with progression-free survival in ovarian cancer. (B) Correlations of the catabolic stroma signature with overall survival in lung and gastric cancer, and with progression-free survival in ovarian cancer. All graphs are calculated using microarray data from 176 chemotherapy-treated lung cancers, 153 5-FU-based adjuvant therapy-treated gastric cancers, and 229 paclitaxel-treated ovarian cancers, determined using an online survival analysis tool. Kaplan-Meier correlations are plotted for high (above median, in red) and low (below median, in black) gene expression.

	A taxol-induced catabolic stroma signature was created comprising UBA1, and other proteins representative of the catabolic CAF-like phenotype, including PSMC5, and VAT1, involved in catabolism and vesicle trafficking, several metabolic enzymes including FASN, G6PD and GNPDA, an autophagy marker, IGF2R, the oxidoreductase HMOX1, and myofibroblastic markers including CNN2 and TLN1. See Table 6 for details and abundances of these proteins in taxol-treated fibroblasts. That catabolic stroma signature showed a strong correlation with survival in treated patients (Figure 7B and 8B), whereas that correlation was not seen in non-treated patients (Figure S2B and S3B). Hence, the over-expression of proteins upon treatment with taxol is strongly linked to poor survival, treatment failure and metastasis in breast, lung, gastric and ovarian cancers. Interestingly, most markers used for the signature are also proteins found to be significantly up-regulated in azathioprine-treated hTERT-BJ1 fibroblasts relative to vehicle, including IGF2R, PSMC5, VAT1, HMOX1, CNN2, TLN1 and FASN (Tables 3, 45, S2, S3 and S4). Thus, we conclude that chemotherapy-mediated changes in the abundance of stromal proteins related to the CAF-like catabolic phenotype measured by quantitative proteomics associate with reduced survival, enhanced recurrence and metastasis incidence in several solid malignancies.

	Table 6. Proteins of the catabolic stroma signature and their contribution to CAF transformation, metabolism, antioxidant response, autophagy and vesicle trafficking

	
		
				CATABOLIC STROMA SIGNATURE

				 

				Taxol

				Process

		

		
				Ubiquitin-like modifier activating enzyme 1

				UBA1

				↑ 2.36

				Protein degradation

		

		
				26S protease regulatory subunit 8

				PSMC5

				↑ 3.17

				Protein degradation

		

		
				Cation-independent mannose-6-phosphate receptor

				IGF2R

				↑ 1.88

				Autophagy

		

		
				Synaptic vesicle membrane protein

				VAT-1 VAT1

				↑ 2.44

				Vesicle trafficking / oxidoreductase /inhibits mitochondrial fusion

		

		
				Heme oxygenase (decycling) 1

				HMOX1

				↑ 2.83

				Antioxidant / oxidoreductase

		

		
				Calponin 2

				CNN2

				↑ 2.76

				Myofibroblastic differentiation

		

		
				Talin 1

				TLN1

				↑ 2.95

				Myofibroblastic differentiation

		

		
				Glucosamine-6-phosphate deaminase 1

				GNPDA1

				↑ 2.46

				Carbohydrate metabolism

		

		
				Glucose-6-phosphate dehydrogenase

				G6PD

				↑ 2.69

				Carbohydrate metabolism /generates antioxidant power

		

		
				Fatty acid synthase

				FASN

				↑ 1.77

				Fatty acid metabolism

		

	

	Discussion

	In this study we have analysed the impact of chemotherapy in the acquisition of the CAF-like, catabolic tumour stroma phenotype, which emerges in stromal fibroblasts in contact with cancer cells, and is characterised by increased glucose uptake, lactate production and extracellular acidification, increased expression of αSMA, augmented production of ROS, an activation of the JNK/AP1, HIF1, TGFβ/SMAD, STAT3 and NFkB stress-induced pathways, senescence and autophagy, and a greater secretion of inflammatory cytokines. To do so, we aimed at comprehensively characterising the cellular and metabolic changes that take place in stromal fibroblasts exposed to two common chemotherapeutic drugs: azathioprine and taxol. Label-free quantitative proteomics and extensive bioinformatics analyses revealed a protein profile characteristic for chemotherapy-treated fibroblasts that included alterations in energy metabolism, antioxidant response, autophagy and senescence, vesicle formation and trafficking, protein degradation, myofibroblastic differentiation and inflammation.

	Proteomic map of the stromal catabolic state induced by chemotherapy

	The main protein set whose expression was altered in chemotherapy-treated fibroblasts was that of enzymes. Azthioprine and taxol effects on the glycolytic function of stromal fibroblasts were characterised in a previous study, which showed the induction of a glycolytic switch in hTERT-BJ1 fibroblasts via increasing their lactate production and extracellular acidification, and decreasing their ATP content [11]. We know now that this behaviour is likely to be a result of the observed up-regulation of enzymes involved in glycolysis and down-regulation of mitochondrial respiration enzymes. Indeed, our proteomic analysis shows alterations not only in glycolysis but also in pyruvate conversion to acetyl-coenzyme A and the TCA cycle. The reduction in ATP production through decreased TCA cycle activity and mitochondrial respiration may be forcing a metabolic switch that allows the cell to obtain energy from alternative metabolic processes such as glycolysis or protein catabolism. This metabolic remodelling also includes an alteration of other pathways of the carbohydrate metabolism, such as the phosphate pentose and hexosamine biosynthesis pathways, and several pathways of the fatty acid metabolism. In line with our findings, a recent study demonstrates that as an adaptive response to mitochondrial respiratory chain dysfunction and ATP deficiency, human fibroblasts up-regulate the expression of glycolytic enzymes, suggesting the induction of anaerobic glycolysis and a cellular catabolic state, in particular protein catabolism, together with autophagy [27].

	According to our data, the hexosamine biosynthesis pathway is also altered in chemotherapy-treated fibroblasts, which goes in line with the increased presence of proteins involved in vesicle formation and trafficking. GNPDA1 is an enzyme of the hexosamine biosynthesis pathway, the end-products of which are used for the synthesis of membrane components such as glycolipids and proteoglycans. However, GNPDA1 catabolizes a reversible conversion between D-fructose-6-phosphate and D-glucosamine-6-phosphate, and therefore could also be used in reverse to produce substrates for glycolysis, by sacrificing structural components of the cell.

	The phosphate pentose pathway is a metabolic pathway also altered by chemotherapy. During the oxidative phase of the pentose phosphate pathway, most of the reducing power of the cell is generated as NADPH. Taxol-treated fibroblasts show increased levels of the initial rate-limiting enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH), which converts glucose-6-phosphate and NADP+ into 6-phosphoglucono-δ-lactone and NADPH. NADPH is also necessary for lipid and nucleic acid biosynthesis, and its re-oxidation to NADP+ constitutes an essential step to prevent damage by oxidative stress. Increased amounts of NADPH go in line with the upregulation of several proteins involved in antioxidant response, such as Nrf2-mediated antioxidant response proteins, as well as the greater ROS levels that we have previously seen in hTERT-BJ1 fibroblasts after taxol treatment [11]. The accumulation of ROS as a consequence of mitochondrial dysregulation during aging is also associated with DNA damage [28]. Therefore, oxidative stress and aging can be coupled in a positive feedback mechanism that accelerates cellular damage and generates a permissive metabolic microenvironment for cancer development and progression [5, 28–30].

	Oxidative stress in healthy cells and tissues by most current anti-cancer therapies is thought to occur via p53 activation, which causes mitochondrial dysfunction, ROS production and downstream STAT3 signalling, promoting inflammation-related cancer [19, 26]. Our proteomics results revealed a predicted activation state of p53, mitochondrial dysfunction, increased expression of antioxidant proteins, autophagy and senescence markers, and specifically STAT3 up-regulation in chemotherapy-treated fibroblasts compared to vehicle. Our observations in vesicle trafficking and protein transport and degradation also suggest a general intensification in the transport of proteins and other cellular components to autophagosomes and lysosomes. Indeed, taxol is able to induce the formation of autophagic vesicles in stromal fibroblasts [11]. By increasing that transport, the stressed cell could be attempting to remove dysfunctional organelles such as mitochondria and other molecules that accumulate as a result of oxidative damage, or alternatively it could also be trying to retrieve molecules for re-utilisation in detriment of de novo protein synthesis, which is more energy consuming.

	Myofibroblasts are abundant components of the reactive tumour microenvironment and are mostly accountable for the development of fibrosis [21], one of the side-effects of cancer therapy [31]. Fibroblast-to-myofibroblast differentiation increases in the stroma with age as well, resulting in an increased incidence of fibrosis-associated diseases, such as cancer [32]. Here, we report that exposure to chemotherapy can independently induce the transformation of fibroblasts into CAFs, by detecting an increase in the presence of numerous markers of myofibroblastic differentiation as measured by quantitative proteomics.

	Finally, we identify several inflammation-related pathways as altered in taxol-treated fibroblasts, suggesting an induction of the inflammatory response. We previously described IL6 as one of the cytokines secreted by chemotherapy-treated fibroblasts and STAT3 target genes as being activated after treatment with taxol [11]. However, to comprehensively characterize the pro-inflammatory cytokines released by hTERT-BJ1 cells, secretome analysis should be performed for better insights.

	In the present study, proteomic analyses revealed the impact of chemotherapy in the acquisition of a catabolic CAF-like phenotype in stromal fibroblasts, gradually conforming an energy-rich, pro-inflammatory microenvironment able to succour cancer cells in their battle for survival, in their purpose to metastasise, or even through which chemotherapy-damaged epithelial cells may become more susceptible to develop a fully malignant phenotype, giving rise to a new cancer. Taxol induces the catabolic stroma phenotype to a bigger extent than azathioprine. The different nature of these two drugs and the concentrations selected for the study could account for their different impact on catabolic remodelling.

	Clinical implications of the catabolic stroma signature

	Quantitative proteomics allowed us to obtain a protein profile characteristic for fibroblasts exposed to azathioprine and taxol, which suggests a general alteration in their energy metabolism and a shift towards glycolysis and catabolic processes: a whole metabolic reprogramming to adapt to chemotherapy-driven mitochondrial dysfunction and oxidative stress. Likewise, the quantitative proteomics analysis allowed us to identify biomarkers of this stromal catabolic state, which were further analysed for their potential clinical implications. We generated a signature to figure out whether the chemotherapy-induced catabolic state in the stroma would have prognostic value. Indeed, the catabolic phenotype in stromal fibroblasts strikingly correlated with poor survival, treatment failure and metastatic growth in a set of breast, ovarian, lung and gastric cancer patients who were subject to chemotherapy, correlation that was lost when untreated patients were considered.

	Our knowledge of the role of healthy stromal cells in metastasis and in particular in the emergence of therapy-related malignancies is still very scarce. A piece of evidence for chemotherapy-induced tumour-promoting paracrine activities of non-malignant cells has only been recently published, showing that pre-treatment of tumour-free mice with a single dose of doxorubicin is sufficient to stimulate the engraftment of lung carcinoma cells and to elevate the mitogenic activity of the serum from treated animals [12]. By label-free quantitative proteomics we detect the acquisition of a catabolic state in stromal cells due to chemotherapy-induced DNA damage, which potentially leads to the generation of an autophagic, nutrient-rich, senescent, pro-inflammatory microenvironment, the ideal niche to encourage the development of a secondary tumour or even a new carcinogenic process. However, the tumour-promoting function and the stability and reversability of the chemotherapy-induced CAF phenotype needs to be further investigated, as well as the differential expression of chemotherapy-induced catabolic stress markers on stromal fibroblasts and cancer cells in vivo.

	To conclude, proteomic analyses revealed a significant metabolic reprogramming in response to chemotherapy. Our data provide information about novel protein targets that might enable and support different stages of the tumorigenic process, thereby opening new doors for future research. Given the essential contribution of the catabolic tumour stroma in cancer progression, it emerges as a new interesting therapeutic target. A promising approach would be the preventive inhibition of the catabolic state transformation. Indeed, TGFβ-induced myofibroblastic transformation in fibroblasts can be reversed by using antioxidants [33]. Most importantly, an antibody against fibroblast activation protein (FAP) is already being tested in clinical trials [34]. Therefore, inhibition of the catabolic stress in the tumour stroma and healthy tissues in parallel to conventional chemotherapy could help avoiding recurrence, metastasis and the growth of second primary tumours.

	Materials and Methods

	Cell culture

	All cell culture experiments were carried out using human foreskin fibroblasts immortalised with the human telomerase reverse transcriptase (hTERTBJ1 cells). hTERT-BJ1 fibroblasts were originally purchased from ATCC (CRL-4001) and maintained in DMEM media (D6546, Sigma) supplemented with 10% fetal bovine serum (FBS) (F7524, Sigma), 100 units/ml of penicillin, 100 μg/ml streptomycin (P0781, Sigma) and 1% Glutamax (#35050087, Life Technologies) at 37°C in a humidified atmosphere containing 5% CO2.

	Chemotherapeutical agents

	Azathioprine (A4638, Sigma) and taxol or paclitaxel (Y0000698, Sigma) were used for this study at 100 μM and 100 nM, respectively.

	Sulforhodamone B (SRB) assay

	SRB (S9012, Sigma) measures total biomass by staining cellular proteins. After 48 h treatment, cells were fixed in 10% trichloroacetic acid (T9159, Sigma) for 1 h at 4°C, stained with SRB (S9012, Sigma) for 15 minutes, and washed 3 times with 1% acetic acid (27225, Sigma). The incorporated die was solubilized with 10 mM Tris Base, pH 8.8 (T1503, Sigma). Absorbance was spectrophotometrically measured at 562 nm in a FluoStar Omega plate reader (BMG Labtech). Background measurements were subtracted from all values.

	Label-free quantitative proteomics

	Chemicals and sample preparation

	Formic acid, trifluoroacetic acid, ammonium formate (10 M), ammonium bicarbonate TCEP (Tris (2-carboxyethyl)phosphine hydrochloride), MMTS (Methyl methanethiosulfonate) and trypsin were all obtained from Sigma. HPLC gradient grade acetonitrile was obtained from Fisher Scientific. Briefly, 2 × 106 hTERT-BJ1 fibroblasts were seeded in 150 cm plates until cells were attached. Cells were then treated with azathioprine or taxol at the concentrations indicated. As control, vehicle-treated cells were processed in parallel. After 48 hours of treatment, cells were lysed in RIPA buffer (R0278, Sigma) and kept at 4°C for 20 minutes with rotation. Lysates were cleared by centrifugation for 10 minutes at 10,000 × g and supernatants were collected and kept frozen at −80°C.

	Protein digestion

	Lysate samples were thawed to room temperature and their concentrations equalised to 1 μg/μL (50 μL volume) with RIPA buffer, and further processed for trypsin digestion by sequential reduction of disulphide bonds with TCEP and alkylation with MMTS. Briefly, 1 μL benzonase (Novagen) was added to the 50 μL aliquot and placed on ice for 15 minutes. The sample was then taken to dryness using a SpeedVac, and resuspended in 22.5 μL trypsin reaction buffer (40 mM ammonium bicarbonate and 9% acetonitrile). One μL of 50 mM TCEP solution was added to each sample, mixed briefly and placed on a heater block at 60°C for 60 minutes. After cooling to room temperature, 0.5 μL of 200 mM MMTS solution was added to each sample and allowed to react for 15 minutes. Trypsin was added in two waves to ensure efficient digestion of the sample. Firstly, 20 μg of sequencing grade trypsin was resuspended in 1800 μL of trypsin reaction buffer; 225 μL of this solution were added to each sample for digestion, and the reactions were left at 37°C overnight with shaking (600 rpm). The following morning, a further aliquot of trypsin was added. Two ml of trypsin reaction buffer was added to 20 μL of sequencing grade trypsin; 250 μL of this solution were added to each of the digest samples from overnight, and the reactions were left at 37°C for 4 hours with shaking (600 rpm). Thirty-five μL 10% formic acid were added to the 500 μL digest sample (0.7% final concentration of formic acid) to stop the digestion. The digested solution was diluted in 7.5 mL of acetonitrile containing 0.3% formic acid.

	HILIC solid phase extraction (SPE) of peptides

	PolyhydroxyethylA SPE 12 μm, 300A, 300mg cartridges (obtained from PolyLC) were used for the HILIC procedure. Prior to use, cartridges required an overnight soak in 50 mM formic acid followed by rinsing with water the following day. Cartridges were preconditioned with 2 mL of Buffer A (90% acetonitrile, 5 mM ammonium formate, pH 2.7) followed by 2 mL of Buffer B (5 mM ammonium formate, pH 2.7) and finally re-equilibrated with 10 mL Buffer A. The diluted samples were loaded onto the cartridges and washed with a further 10 mL Buffer A. Finally, peptides were eluted in 1 mL Buffer C (9 parts Buffer B plus 1 part Buffer A) and the samples dried on a Speedvac to remove organic solvent prior to LCMS/MS analysis.

	LC-MS/MS analysis

	Lyophilised digests were resuspended in 50 μL of 0.1% TFA to give an approximate concentration of 1 μg/μL. One μL injection volumes were used throughout resulting in an on-column peptide loading of approximately 1 μg per injection. Analysis was performed in quintuplicate for each sample. All LC-MS/MS analyses were performed on an LTQ Orbitrap XL mass spectrometer coupled to an Ultimate 3000 RSLCnano system (Thermo Scientific). One μL injection volumes were used throughout and samples loaded directly onto the analytical column, PepMap RSLC C18, 2 μm × 75 μm id × 50 cm (Thermo Scientific). The composition (v/v) of LC buffers were as follows; Buffer A - 99.9% water plus 0.1% formic acid and Buffer B - 80% acetonitrile, 19.9% water and 0.1% formic acid. Peptides were loaded directly onto the column at a flow rate of 400 nl/min with an initial mobile phase composition of 1% B. The organic strength was increased linearly from 1% to 22.5% B over 22.5 minutes again at 400 nl/min, followed by an increase to 24.8% B over the next 2.6 minutes with a concomitant reduction in flow rate to 300 nl/min, and to 39% B over a further 14 minutes. A further increase to 60% B over the next 5 minutes was followed by a ramp to 95% B over 2.5 minutes where it was held for a further 2 minutes. The column was then allowed to re-equilibrate to 1% B for a total analysis time of 74 minutes. The mass spectrometer was instructed to perform data dependent acquisition on the top six precursor ions, which were measured in the Orbitrap FTMS detector over the mass range 370–1200 m/z, at a nominal resolution of 60,000. MS/MS spectra were acquired in the ion trap under CID conditions with normalized collision energy of 35, isolation width of 3 Th, Q value of 0.25 and 30 ms activation time. Gasphase fractionation was performed on the five replicate injections such that MS/MS data was collected for precursor ion range 370–494 m/z Injection 1, 494–595 m/z Injection 2, 595–685 m/z Injection 3, 685–817 m/z Injection 4 and 817–1200 m/z Injection 5.

	Statistical analysis

	Xcalibur raw data files acquired on the LTQ-Orbitrap XL were directly imported into Progenesis LCMS software (Waters Corp) for peak detection and alignment. Data were analysed using the Mascot search engine. Five replicates were analysed for each sample type (N = 5). Statistical analyses were performed using ANOVA and only fold-changes in proteins with a p-value less than 0.05 were considered significant.

	Ingenuity pathway analyses

	Pathway and function analyses were generated using Ingenuity Pathway Analysis (IPA) (Ingenuity systems, http://www.ingenuity.com), which assists with proteomics data interpretation via grouping differentially expressed genes or proteins into known functions and pathways. Pathways with a z score > 1.9 were considered as significantly activated, and pathways with a z score < −1.9 were considered as significantly inhibited.

	Graphs and correlation analyses

	All graphs were done in Microsoft Excel except for correlation graphs. Correlations between protein expression and patient survival were calculated using a survival analysis tool available online (http://kmplot.com) [16].
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	The advent of the OMIC technologies has strongly evolved the knowledge about the origin, the type and the response to therapy of a given tumor. To date we are aware that the epigenetic and genomic landscapes of tumors which origin, histopathological diagnoses and clinical stages are almost identical can be highly heterogeneous. Initially, the Human Genome Project represented the reference map for the human genome and provided the ideal background for the development of technology and analytic tools to decipher and rationalize enormous quantities of genomic data [1]. Subsequently, the National Research Council reported on the requirement of a precise taxonomy of human disease based on the continuous flow of molecular data originating from the OMIC approaches. This led The Cancer Genome Atlas (TGCA) and the International Cancer Genome Consortium (ICGC) toward the molecular taxonomy of different human cancers. A large spectrum of gene mutations has been identified [1]. They can be categorized in: (a) passenger mutations that are the majority and may be biologically inactive and clinically irrelevant; (b) driver mutations whose activity is required for the aberrant growth, survival and chemoresistance of human cancers. Driver mutations have been the main molecular targets to be tackled with “smart” drugs, thus providing the rationale for precise medicine. Next Generation Sequence (NGS) technology has enabled to identify actionable targets such as EGFR in lung cancer and BRAF in melanoma [1,2]. Since these drugs benefit only those patients carrying specific driver mutations the identification of biomarkers that can predict treatment responses is vital for the success of the precise cancer therapy and for the development of anticancer drugs. EGFR mutations are considered biomarkers for selecting lung cancer patients for the treatment with EGFR inhibitors [3]. Gefinitib and erlotinib represent the first choice for the treatment of lung cancer patients carrying EGFR mutations and prolong significantly the progression-free survival of the selected patients. Despite it, both gefinitib and erlotinib cannot be used to treat all lung cancer patients harbouring EGFR mutations due to mutation site heterogeneity which negatively impacts on the affinity of EGFR inhibitors to the mutated EGFR and consequently of the efficacy of the treatment. Lung cancer patients develop resistance to EGFR inhibitors due mostly common (50% of EGFR mutated lung cancer patients) to additional EGFRT90M mutation [3]. Unlike EGFR, otherdriver mutations as those affecting the p53 gene, the most frequent target of genetic alterations in human cancers, have not yet led to the development of targeted drugs to be used in the treatment of human cancers carrying mutant p53 proteins [4]. This clearly says, that while thousands of cancer genome profiles have enormously improved the molecular taxonomy of human cancers, they have only paved a background for precise cancer therapy which urges to be continuously fed towards the identification of precise cancer biomarkers. The improvement of methodologies for the isolation of circulating tumoral DNA from patients enrolled in cancer genome-driven trials coupled with NGS might contribute to tailor more precisely cancer therapy [1]. At the same time, we have learned from the OMIC technologies that what so called non-coding portion of the human genome plays a fundamental role in regulating the expression and the activity of the genomic coding regions [5]. The last two decades have witnessed the identification of non-coding transcripts which accordingly to their respective lengths have been distinguished in long non-coding RNAs (lncRNAs), microRNAs, small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). MicroRNAs, which regulate gene expression at the posttranscriptional level either inhibiting translation or promoting degradation of target mRNAs, emerge to be powerful to distinguish tumor tissues from their matched surrounding non-tumoral samples, to classify tumor hystotypes, to predict tumor recurrence, to identify responders vs non-responders and to monitor response to cancer therapy [5,6,7]. MicroRNAs might represent early indicators of future breast cancer incidence. Previous evidence has shown that metabolic and environmental risk factors may alter the expression of microRNAs. MicroRNA profiling of the leucocytes of healthy pre-menopausal women recruited in the ORDET prospective cohort study over a follow-up period of 20 years revealed that microRNA downregulation represents a very early alteration in the development of breast cancer [8]. Selected microRNA alterations identified in ORDET were also found in different breast cancer databases, thus strengthening their value as early long-term predictors of breast cancer occurrence [8]. MicroRNAs can also be found in blood and other biological fluids as circulating factors lined into exosomial vesicles. Despite the molecular mechanisms underlying the production and the release from tumoral cells and the intrinsic processing occurring in the exosomes are yet underexplored their potential to unveil powerful and precise cancer biomarkers is certainly promising and might provide with an additional option to treat cancer successfully.
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	The identification of prognostic and predictive biomarkers is a key research area in medicine. These biomarkers aim to contribute to personalize medicine. Ultimately, in personalized medicine treatment will be tailored towards each patient's specific disease and genetics to optimize treatment outcome and minimize side effects. In cancer research large efforts are made to screen for biological entities like gene mutations and transcription-based biomarkers for this purpose, however the identified markers are most of the time not accurate enough for clinical use. Recently we have shown that confounding factors play an important role in the limited performance of such (bio)markers [1]. Mutations in the RAS gene, a gene frequently mutated in lung cancer, were not prognostic [2], however they largely influenced accuracy of transcription-based biomarkers for non-small cell lung cancer. Taking RAS mutations to define patient subgroups and define transcription-based biomarkers for these specific patient subgroups resulted in an increase in prognostic power. While screening for prognostic or predictive markers it will thus be key to be aware of and correct for potential confounders. Therefore to create clinically useful biomarkers it will be detrimental to define clinically relevant patient subgroups rather than generalize across patients.

	This general principle might apply to a broad range of other variables and studies. For example, one can imagine different biomarkers being optimal in older vs. younger patients, in men vs. women and especially based on a broad range of other tumour genetic information. To this last point, large studies such as those initiated by The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) will provide a wealth of data to exploit these findings. These studies can be used to define clinically-relevant patient subgroups based on genetic heterogeneity, rather than investigating single entities. For example, one can imagine systematic studies to identify genes that, while not themselves prognostic, confound the accuracy of other prognostic markers. Or, indeed, confound the accuracy of other biomarkers entirely: diagnostic or predictive markers, or markers for monitoring disease progress could all follow this general template.

	To perform such analyses, it will be critical to rigorously assess the information content of different classes of biomarkers in different clinical situations. For example, we established interplay between RAS mutation and expression of a set of 14 genes; a gene expression-based classifier could be used to predict RAS mutation status. A large number of random gene sets were used to show this RAS predictor had optimal performance. Further large permutation studies, testing millions of random gene sets for their prognostic power, established that predicting prognosis for patients with RAS mutations should be done with different gene sets than for patients without RAS mutations. Testing large sets of random gene sets also provides valuable information for performance of transcriptome-based biomarkers. Comparing performance of the biomarker against the performance distribution of the random gene sets will immediately show whether these perform better than random and are worthwhile proceeding with [3, 4].

	Taken together, these data point at a sea-change in the development of biomarkers. Rather than simply focusing on finding the best “signature” to predict a specific clinical event [5, 6], we will look to further sub-stratify patient populations into subtypes that can be accurately prognosed. Indeed, while these subtypes themselves may not be inherently informative, they may provide the structure or framework upon which more accurate biomarkers can be developed. We can foresee the adoption of information content methods like those described above to try to identify proactively specific genomic events that mark groups of patients with coherently predictable clinical outcome.
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	Although targeting MET has yielded promising results in preclinical studies, few clinical trials of MET inhibitors have demonstrated the expected therapeutic benefits. This inconsistency raises the possibilities that there are different subsets of MET/HGF-aberrant breast cancer with different responses to MET/HGF-targeted therapies and that MET inhibitors benefit only a particular subgroup of patients. To fully realize the benefits of MET inhibitors, we must clarify the patient population that will benefit from them. Therefore, it is crucial to identify biomarkers that will optimize the use of MET inhibitors in individual breast cancer patients.

	MET aberrations. MET overexpression with or without amplification has been reported in many cancers [1]. MET protein expression and its phosphorylation were aberrantly upregulated in around 70% and 48% breast cancers, respectively, which independently predict poor outcome [2]. The MET signaling also can be aberrantly activated as a consequence of MET mutation or functional single nucleotide polymorphisms (SNPs). Several MET gene mutations have been reported in various cancers, but oncogenic MET mutations occur spontaneously in only 2-3% [1]. Mutation in the tyrosine kinase domain renders the enzyme constitutively active, while mutation in the juxtamembrane domain reduces MET degradation. MET sequence changes occur in 9% of patients with breast cancer. However, these appear to represent SNPs rather than somatic mutations. The sequence changes were associated with higher metastatic burden and high-grade histology [3]. A recent study demonstrated that MET is functionally altered by an uncommon germline SNP, MET-T1010I, which is present twice as frequently in patients with metastatic breast cancer as in the general population. MET-T1010I transforms mammary epithelial cells and drives tumor formation and invasion in humanHGF transgenic mice [4], suggesting that it potentially alters tumor pathophysiology and response to MET-targeted therapies. Therefore, MET-T1010I should be considered a potential biomarker when implementing clinical trials of MET-targeted agents.

	Hepatocyte growth factor (HGF)/scatter factor upregulation. Not only the MET receptor but also its ligand HGF drives tumor formation, metastasis, and drug resistance [1]. We recently established a mouse model system in which the host mice express human HGF at varying levels and the xenografts express human MET receptor of varying status. The models faithfully mimic patients with different HGF levels and different MET receptor status in their breast cancer. Using this model, we found that MCF-10A cells transformed with aberrant MET formed tumors in the mice with transgenic human HGF but not in the negative litters. Comparing mutant MET, wild type MET is more stringently dependent on its natural ligand HGF. These data suggest that not only MET status affects cell behavior but also level of its ligand HGF in the tumor microenvironment plays a key role in determining the functional outcomes of MET aberrations. Indeed, overexpression of HGF has been demonstrated in breast cancer, and HGF levels are increased in the serum of patients with breast cancer. Both primary and metastatic tumor cells (autocrine mechanism) and stromal cells (paracrine mechanism) secrete high levels of HGF and aberrantly induce ligand-dependent MET signaling. High HGF level correlates with poor prognosis in breast cancer [1]. Hypoxic conditions stimulate production of both MET receptor and HGF, rendering tumor cells more sensitive to HGF stimulation in the invasion process [5]. Therefore, HGF level also should be considered a potential biomarker when testing MET-targeted agents.

	Crosstalk between MET and other pathways. Accumulating evidence suggests that MET plays a key role in resistance to targeted therapies for cancer through crosstalk between MET and other pathways, such as the EGFR family [6]. Inhibition of either MET or EGFR was insufficient to fully block signaling in gefitinib-resistant cell lines, whereas the combination completely inhibited signaling. Indeed, combined targeting of MET with onartuzumab and EGFR with erlotinib in a clinical trial prolonged progression-free survival and overall survival in patients with lung cancer expressing high levels of MET [7]. However, the mechanisms of acquired resistance to MET inhibition remain little known. Crosstalk with other oncogenic pathways might induce acquired resistance to MET inhibition. We demonstrated that concurrent aberration of MET andPIK3CA greatly increased in breast cancer. Our unpublished data show that concurrent aberration of MET and PI3K significantly increased cell proliferation and invasion in vitro and in mice with similar human HGF levels. Targeting both MET and PI3K yielded greater inhibitory efficacy than targeting either agent alone, suggesting that response to MET-targeted therapy in breast cancer is dependent on an aberrant MET-HGF/PI3K axis.

	Taken together, these findings indicate that, to optimize the use of therapies targeting MET signaling and improve treatment efficacy in individual breast cancer patients, MET status, HGF level, and activation of the MET-HGF/PI3K and EGFR-MET axes should be considered as potential biomarkers when implementing clinical trials of MET-targeted agents.

	References

	
		Sierra JR, Tsao MS. Ther Adv Med Oncol. 2011;3:S21–S35. [PubMed]

		Raghav KP, et al.Clin Cancer Res. 2012;18:2269–2277. [PubMed]

		de Melo Gagliato D, et al.Clin Breast Cancer. 2014;14:468–474. [PubMed]

		Liu S, et al.Oncotarget. 2015;6:2604–2614. [PubMed]

		Pennacchietti S, et al.Cancer Cell. 2003;3:347–361. [PubMed]

		Guo A, et al.Proc Natl Acad Sci U S A. 2008;105:692–697. [PubMed]

		Spigel DR, et al.J Clin Oncol. 2013;31:4105–4014. [PubMed]



	 


[image: Aging_Header_Facebook]

	Research Paper Volume 6, Issue 4 pp 248—263

	Methylated TRF2 associates with the nuclear matrix and serves as a potential biomarker for cellular senescence

	Taylor R. H Mitchell 1 , Xu-Dong Zhu 1

	
		1 Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1



	received: November 29, 2013 ; accepted: April 3, 2014 ; published: April 5, 2014

	10.18632/aging.100650

	Abstract

	Methylation of N-terminal arginines of the shelterin component TRF2 is important for cellular proliferation. While TRF2 is found at telomeres, where it plays an essential role in maintaining telomere integrity, little is known about the cellular localization of methylated TRF2. Here we report that the majority of methylated TRF2 is resistant to extraction by high salt buffer and DNase I treatment, indicating that methylated TRF2 is tightly associated with the nuclear matrix. We show that methylated TRF2 drastically alters its nuclear staining as normal human primary fibroblast cells approach and enter replicative senescence. This altered nuclear staining, which is found to be overwhelmingly associated with misshapen nuclei and abnormal nuclear matrix folds, can be suppressed by hTERT and it is barely detectable in transformed and cancer cell lines. We find that dysfunctional telomeres and DNA damage, both of which are potent inducers of cellular senescence, promote the altered nuclear staining of methylated TRF2, which is dependent upon the ATM-mediated DNA damage response. Collectively, these results suggest that the altered nuclear staining of methylated TRF2 may represent ATM-mediated nuclear structural alteration associated with cellular senescence. Our data further imply that methylated TRF2 can serve as a potential biomarker for cellular senescence.

	Introduction

	Cellular senescence refers to a state of permanent arrest of cell proliferation and it is generally thought to be a response to potentially oncogenic stimuli [1, 2], which include telomere shortening, DNA damage either at telomeres or elsewhere in the genome, strong mitogenic stimuli and epigenomic perturbations. Since it was first described approximately fifty years ago [3], cellular senescence has emerged as an important mechanism linked to both tumor suppression and aging. In most human somatic cells, telomeres shorten with each round of DNA replication, in part because DNA polymerases are unable to fill in the gap generated from removal of the last RNA primer [4]. When telomeres become critically short, they activate a DNA damage response and trigger the induction of cellular senescence [5]. Telomerase, a reverse transcriptase that can replenish the repetitive telomeric DNA de novo, is able to circumvent telomere shortening and allows cells to gain unlimited growth potential, a feature associated with cancer. Therefore cellular senescence is widely considered as a tumor suppressive mechanism. In addition, cellular senescence is also implicated in tissue repair and inflammation associated with aging and cancer progression [1, 2].

	The nuclear matrix is a filamentous network of protein, DNA and RNA that is refractory to high salt extraction [6-8]. This structure serves as an architectural skeleton to the nucleus and provides support for chromatin organization and various nuclear functions including DNA replication, transcription and DNA repair [8]. Changes in the composition of the nuclear matrix have been observed in senescent cells [9]. Alterations in the nuclear matrix have been implicated in restricting cellular proliferation in mortal human fibroblasts [10]. Furthermore, nuclei with abnormal nuclear structure are found to accumulate in aged and prematurely senescent cells [11, 12].

	Telomeres, heterochromatic structures found at the ends of linear eukaryotic chromosomes, function to protect natural chromosome ends from being recognized as damaged DNA. Mammalian telomeric DNA consists of tandem repeats of TTAGGG and is bound by a six-subunit protein complex [13, 14], referred to as shelterin or telosome, which is composed of TRF1, TRF2, TIN2, POT1, TPP1 and hRap1. Telomeres are attached to the nuclear matrix [15, 16] and components of the shelterin complex have been reported to be associated with the nuclear envelope as well as the nuclear matrix [10, 17-19]. TIN2L, an isoform of TIN2, has been suggested to mediate the interaction between telomeres and the nuclear matrix [17] whereas hRap1 has been implicated in tethering telomeres to the nuclear envelope [18]. TRF2, a shelterin protein that interacts directly with both TIN2 and hRap1 [20-23], has also been implicated in mediating the interaction between telomeres and the nuclear matrix [19]. However, little is known about the role of post-translational modification in mediating the interaction between shelterin proteins and the nuclear matrix.

	TRF2, a subunit of the shelterin complex, binds to duplex telomeric DNA [24, 25] and plays a crucial role in telomere protection [26]. TRF2 contains an N-terminal basic domain rich in glycines and arginines (the GAR domain), a central TRFH dimerization domain, a flexible linker region and a C-terminal Myb-like DNA binding domain [24, 25]. It has been shown that loss of TRF2 from telomeres through either TRF2 knockout or overexpression of a dominant-negative allele of TRF2 promotes the formation of telomere end-to-end fusions [26, 27]. On the other hand, overexpression of TRF2 lacking the basic/GAR domain induces telomere rapid deletion [28] whereas overexpression of TRF2 carrying amino acid substitutions of arginines to lysines in the basic/GAR domain promotes the formation of fragile telomeres [29]. In all aforementioned cases, the formation of dysfunctional telomeres resulting from disruption of TRF2 function results in the induction of cellular senescence [26-29].

	TRF2 undergoes extensive post-translational modification [30], which in turn regulates its stability, DNA binding and cellular localization. Ubiquitylation of TRF2 by Siah1, an E3 ligase, promotes TRF2 degradation and replicative senescence of human primary fibroblasts [31]. Acetylation, SUMOlyation and poly(ADP-ribosyl)ation have been implicated in modulating TRF2 binding to telomeric DNA [32-35]. TRF2 is phosphorylated in response to DNA damage and this phosphorylation has been implicated in DNA double strand break repair [36, 37]. Arginines in the N-terminal basic/GAR domain of TRF2 are methylated by protein arginine methyltransferase 1 (PRMT1) [29]. Loss of arginine methylation in TRF2 induces DNA-damage response foci at telomeres and triggers cellular senescence [29]. Arginine methylation is also implicated in negatively regulating the amount of telomere-bound TRF2 [29], raising a question as to whether methylated TRF2 is associated with telomeres in vivo.

	Here we report that the majority of methylated TRF2 is not released by the treatment with high salt buffer and DNase I digestion and that it co-fractionates with lamin A, a component of the nuclear matrix [38, 39], suggesting that methylated TRF2 interacts with the nuclear matrix. We find that methylated TRF2 is largely not localized at telomeres, indicating that association of TRF2 with the nuclear matrix is likely independent of telomeres. We demonstrate that methylated TRF2 dramatically changes its nuclear staining as normal human primary fibroblast cells approach and enter replicative senescence. We find that the altered nuclear staining of methylated TRF2 is predominantly associated with misshapen nuclei and abnormal nuclear matrix folds. Introduction of hTERT into human primary fibroblast cells suppresses the altered nuclear staining of methylated TRF2, suggesting that progressive telomere shortening may contribute to the altered staining of methylated TRF2 in normal primary fibroblasts. In addition to telomere shortening, dysfunctional telomeres and ionizing radiation-induced DNA damage, both of which are potent inducers of cellular senescence, also promote the altered nuclear staining of methylated TRF2. Furthermore, we show that the lack or inhibition of ATM (ataxia telangiectasia mutated), a master regulator of the DNA damage reponse [40, 41], blocks the formation of ionizing irradiation (IR)-induced altered nuclear staining of methylated TRF2, indicating that the formation of the altered nuclear staining of methylated TRF2 is mediated by the ATM-dependent DNA damage response. Taken together, our results reveal that methylated TRF2-associated nuclear matrix undergoes an ATM-mediated structural alteration during the process of cellular senescence. Our data further imply that methylated TRF2 may serve as a potential biomarker for cellular senescence.

	Results

	Methylated TRF2 is associated with nuclear matrix

	We have previously reported that PRMT1 methylates arginines in the N-terminal GAR domain of TRF2 and that this arginine methylation negatively regulates TRF2 association with telomere chromatin [29], suggesting that methylated TRF2 is not associated with telomeres in vivo. To investigate the nuclear compartmentalization of methylated TRF2, we first subjected hTERT-immortalized BJ (hTERT-BJ) cells to analysis of sequential extraction of the nuclear matrix, which began with the treatment of cells with the CSK buffer to remove the majority of soluble proteins. The treatment of the RSB-magik buffer further removed the cytoskeleton, leaving behind the nuclei and their attached filaments. Digestion of the nuclei with DNase I released chromatin bound proteins and the DNase I-resistant pellet was then further fractionated to release the outer nuclear matrix components by 2M NaCl. The treatment with RNase A disassembled ribonucleo-proteins and the final insoluble pellet contained the core nucleofilament proteins. The DNaseI-resistant fractions including the pellet are referred to as the nuclear matrix-associated fractions.

	Examination of cell fractionations of hTERT-BJ with anti-Lamin A antibody revealed that Lamin A, a nuclear matrix-associated protein [38, 39], was predominantly found in the final pellet as well as fractions treated with 2M NaCl and RNase A (Fig. 1A), in agreement with these DNase I-resistant fractions being nuclear matrix. On the other hand, we found that the majority of chromatin-bound histone H2AX protein was released by the DNase I digestion (Fig. 1A), suggesting that the sequential cell fractionation protocol was working as expected. A very small amount of PRMT1 was detected in fractions associated with the nuclear matrix, consistent with previous findings [42]. In addition, a small amount of shelterin proteins including TRF1, TRF2 and hRap1 was also found in fractions associated with nuclear matrix (Fig. 1A), indicative of the nuclear matrix association of the shelterin proteins.

	[image: Methylated TRF2 is associated with the nuclear matrix. (A) Sequential extraction of the nuclear matrix from hTERT-BJ cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-hRap1, anti-TRF1, anti-Lamin A, anti-H2AX, or anti-PRMT1 antibody. (B) Western analysis of 293T cells expressing shPRMT1 or the vector alone. Immunoblotting was performed with anti-PRMT1, anti-TRF2-2meR17 or anti-TRF2 antibody. The γ-tubulin blot was used a loading control. (C) Western analysis of 293T cells overexpressing Myc-tagged wild type TRF2, TRF2 carrying amino acid substitutions of arginines to lysines (TRF2-RK) or TRF2 lacking the N-terminal GAR/basic domain (TRF2-ΔB). Immunoblotting was carried out with anti-TRF2-2meR17 or anti-Myc antibody. (D) Sequential extraction of the nuclear matrix from IMR90 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-Lamin A or anti-H2AX antibody. (E) Sequential extraction of the nuclear matrix from GM9503 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody. (F) Sequential extraction of the nuclear matrix from HeLaI.2.11 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-Lamin A or anti-H2AX antibody. (G) Western analysis of early and late passage GM9503 cells. Immunoblotting was performed with anti-TRF2-2meR17 and anti-TRF2 antibody. The γ-tubulin blot was used as a loading control.]

	Figure 1. Methylated TRF2 is associated with the nuclear matrix. (A) Sequential extraction of the nuclear matrix from hTERT-BJ cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-hRap1, anti-TRF1, anti-Lamin A, anti-H2AX, or anti-PRMT1 antibody. (B) Western analysis of 293T cells expressing shPRMT1 or the vector alone. Immunoblotting was performed with anti-PRMT1, anti-TRF2-2meR17 or anti-TRF2 antibody. The γ-tubulin blot was used a loading control. (C) Western analysis of 293T cells overexpressing Myc-tagged wild type TRF2, TRF2 carrying amino acid substitutions of arginines to lysines (TRF2-RK) or TRF2 lacking the N-terminal GAR/basic domain (TRF2-ΔB). Immunoblotting was carried out with anti-TRF2-2meR17 or anti-Myc antibody. (D) Sequential extraction of the nuclear matrix from IMR90 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-Lamin A or anti-H2AX antibody. (E) Sequential extraction of the nuclear matrix from GM9503 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody. (F) Sequential extraction of the nuclear matrix from HeLaI.2.11 cells. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2, anti-Lamin A or anti-H2AX antibody. (G) Western analysis of early and late passage GM9503 cells. Immunoblotting was performed with anti-TRF2-2meR17 and anti-TRF2 antibody. The γ-tubulin blot was used as a loading control.

	We have previously raised an antibody specifically against TRF2 methylated at R17 (anti-2meR17) [29], which specifically recognized methylated TRF2 (Fig. 1B) but not TRF2 carrying amino acid substitutions of arginines to lysines in its N-terminal domain (TRF2-RK) or lacking its N-terminal domain (TRF2-ΔB) (Fig. 1C). Using anti-2meR17 antibody, we found that although some methylated TRF2 was released by DNase I digestion, the majority of methylated TRF2 was recovered in nuclear matrix-associated fractions (Fig. 1A). The association of methylated TRF2 with the nuclear matrix was also observed in two other primary fibroblasts IMR90 and GM9503 cells as well as cancer cell line HeLaI.211 (Fig. 1D-1F). Taken together, these results suggest that methylated TRF2 preferentially associates with the nuclear matrix.

	Methylated TRF2 exhibits nuclear staining that is predominantly not associated with human telomeres

	To further investigate the nuclear localization of methylated TRF2, we performed indirect immunofluorescence with anti-2meR17. We found that methylated TRF2 exhibited nuclear staining in both human primary (IMR90, GM9503) and cancer (HeLaI.2.11) cells (Fig. 2A). Analysis of dual indirect immunofluorescence with anti-2meR17 in conjunction with antibody against TRF1 [43], a marker for interphase telomeres, revealed that although there appeared to be some overlap between anti-2meR17 staining and anti-TRF1 staining (Fig. 2B), the majority of methylated TRF2 was not found to localize at telomeres (Fig. 2B). To investigate whether the observed anti-2meR17 staining might be due to any non-specific binding, we performed indirect immunofluorescence with anti-2meR17 antibody in the presence of TRF2 peptide containing either unmodified R17 or dimethylated R17.

	[image: Methylated TRF2 exhibits nuclear staining largely free of human telomeres. (A) Analysis of indirect immunofluorescence of three different cell lines with anti-TRF2-2meR17 antibody. Cell nuclei were stained with DAPI in blue. (B) Analysis of dual indirect immunofluorescence with anti-TRF2-2meR17 (green) in conjunction with anti-TRF1 antibody (red). HeLaI.2.11 cell nuclei were stained in blue. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 in conjunction with 100 ng of TRF2 peptide containing either modified or unmodified arginine 17. HeLaI.2.11 cell nuclei were stained with DAPI in blue.]

	Figure 2. Methylated TRF2 exhibits nuclear staining largely free of human telomeres. (A) Analysis of indirect immunofluorescence of three different cell lines with anti-TRF2-2meR17 antibody. Cell nuclei were stained with DAPI in blue. (B) Analysis of dual indirect immunofluorescence with anti-TRF2-2meR17 (green) in conjunction with anti-TRF1 antibody (red). HeLaI.2.11 cell nuclei were stained in blue. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 in conjunction with 100 ng of TRF2 peptide containing either modified or unmodified arginine 17. HeLaI.2.11 cell nuclei were stained with DAPI in blue.

	We found that while TRF2 peptide containing unmodified R17 had little effect on the nuclear staining of methylated TRF2 in these cell lines (Fig. 2C and data not shown), TRF2 peptide containing dimethylated R17 abrogated the nuclear staining of methylated TRF2 (Fig. 2C and data not shown). These results suggest that the observed anti-2meR17 staining is unlikely due to non-specific binding. Taken together, these results suggest that methylated TRF2 localizes in nuclear domains largely free of human telomeres. These results are in agreement with our previous report that arginine methylation negatively regulates TRF2 association with telomere chromatin [29].

	Replicative senescence induces altered nuclear staining of methylated TRF2

	We have shown that methylated TRF2 is associated with the nuclear matrix, which is known to undergoalterations in the process of replicative senescence [44]. To investigate whether the association of methylated TRF2 with the nuclear matrix might be affected by cellular senescence, we performed the sequential extraction of nuclear matrix in both early and late passages of primary skin fibroblast GM9503 cells. GM9503 cells exhibited an accumulation of senescent cells at passage 45 (Fig. 3A). Analysis of cell fractionations with anti-2meR17 antibody revealed that the association of methylated TRF2 with the nuclear matrix in late passage GM9503 (p45) cells was indistinguishable from that in young GM9503 (p21) cells (Fig. 1E). We did not observe any significant change in the level of methylated TRF2 and the total TRF2 between early and late passages of GM9503 cells (Fig. 1G). Taken together, these results suggest that methylated TRF2 does not dissociate from the nuclear matrix during the process of cellular senescence.

	[image: Methylated TRF2 exhibits an altered nuclear staining associated with induction of replicative senescence in normal human primary fibroblast GM9503 cells. (A) Senescence-associated β-galactosidase assays for GM9503 cells at either p15 or p45. (B) Quantification of percentage of young and senescent GM9503 cells with BrdU incorporation. A total of 300 cells in triplicate were scored for either early passage (p21) or senescent GM9503 (p48) cells. Standard deviations from three independent experiments are indicated. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 antibody in GM9503 cells at either p15 or p45. Cell nuclei were stained with DAPI in blue. (D) Analysis of dual indirect immunofluorescence with anti-TRF2-2meR17 antibody (green) in conjunction with anti-BrdU antibody (red). The early passage (p20) and senescent GM9503 (p48) cells were incubated for six hours in growth media containing 10 μM BrdU prior to being processed for immunofluorescence. Cell nuclei were stained with DAPI in blue. (E) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 in conjunction with 100 ng of TRF2 peptide containing either modified or unmodified arginine 17. Cell nuclei were stained with DAPI in blue. (F) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. At least 900 cells in triplicate were scored in blind for each transformed cell line or each normal primary fibroblast cell line at a given passage as indicated. Both HeLa and WI38VA13 are transformed cell lines. Standard deviations from three independent experiments are indicated.]

	Figure 3. Methylated TRF2 exhibits an altered nuclear staining associated with induction of replicative senescence in normal human primary fibroblast GM9503 cells. (A) Senescence-associated β-galactosidase assays for GM9503 cells at either p15 or p45. (B) Quantification of percentage of young and senescent GM9503 cells with BrdU incorporation. A total of 300 cells in triplicate were scored for either early passage (p21) or senescent GM9503 (p48) cells. Standard deviations from three independent experiments are indicated. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 antibody in GM9503 cells at either p15 or p45. Cell nuclei were stained with DAPI in blue. (D) Analysis of dual indirect immunofluorescence with anti-TRF2-2meR17 antibody (green) in conjunction with anti-BrdU antibody (red). The early passage (p20) and senescent GM9503 (p48) cells were incubated for six hours in growth media containing 10 μM BrdU prior to being processed for immunofluorescence. Cell nuclei were stained with DAPI in blue. (E) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 in conjunction with 100 ng of TRF2 peptide containing either modified or unmodified arginine 17. Cell nuclei were stained with DAPI in blue. (F) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. At least 900 cells in triplicate were scored in blind for each transformed cell line or each normal primary fibroblast cell line at a given passage as indicated. Both HeLa and WI38VA13 are transformed cell lines. Standard deviations from three independent experiments are indicated.

	To investigate whether the nuclear staining of methylated TRF2 might undergo any changes during the process of replicative senescence, we performed indirect immunofluorescence with anti-2meR17 antibody in GM9503 cells of various passages from young to senescent. At passage 45, the majority of GM9503 cells were found to be positive for senescence-associated β-galactosidase staining (Fig. 3A). After they reached passage 48, GM9503 cells appeared to have fully entered replicative senescence since they failed to gain one population doubling over a period of at least two weeks and they showed little incorporation of BrdU (Fig. 3B), a marker used to measure DNA synthesis in cycling cells.

	We found that methylated TRF2 showed a rather homogenous nuclear staining in young GM9503 (p15 and p20) cells (Fig. 3C and 3D), however, its staining was drastically altered in late passage and senescent GM9503 (p45 and p48) cells, (Fig. 3C and 3D and Supplementary Fig. 1). To address a concern that this altered nuclear staining might be due to any non-specific binding of anti-2meR17 antibody, we performed indirect immunofluorescence with anti-2meR17 antibody in the presence of TRF2 peptide containing either unmodified R17 or dimethylated R17. We found that TRF2 peptide containing unmodified R17 had little effect on the altered nuclear staining of methylated TRF2 whereas TRF2 peptide containing dimethylated R17 abolished TRF2 staining in senescent cells (Fig. 3E), arguing against the possibility that the observed altered nuclear staining of methylated TRF2 is due to non-specific binding of the anti-2meR17 antibody.

	While less than 3% of young GM9503 (p15) cells displayed the altered methylated TRF2 staining (Fig. 3F), about 30% of late passage GM9305 (p45) cells showed the altered methylated TRF2 staining (Fig. 3F). To investigate whether the altered nuclear staining of methylated TRF2 might occur in non-dividing cells, we cultured GM9503 cells in media containing BrdU. Analysis of dual indirect immunofluorescence with anti-2meR17 antibody in conjunction with anti-BrdU antibody revealed that the altered methylated TRF2 staining was always associated with nuclei lacking incorporation of BrdU (Fig. 3D). We found that in the senescent GM9503 (p48) cell culture with little BrdU incorporation (Fig. 3B), over 90% of nuclei exhibited the altered methylated TRF2 staining (Fig. 3F). Taken together, these results suggest that the altered methylated TRF2 staining is associated with replicative senescence in GM9503 cells.

	We also observed an induction of the altered nuclear staining of methylated TRF2 in several other normal human primary fibroblast cell lines (AG02661 and GM1706) as they aged in cultures (Supplementary Fig. 2). To further investigate whether the altered methylated TRF2 staining might be a general feature of replicative senescence, we passaged young IMR90 (p22) cells continuously every four days for 72 days until they reached passage 40 (Fig. 4A). In the last two weeks of culturing, IMR90 failed to gain one population doubling (Fig. 4A), suggesting that the IMR90 cell culture had entered replicative senescence. In agreement with this notion, we found that only 2% of IMR90 (p40) cells were stained positive for anti-BrdU antibody (Fig. 4B) and that about 90% of IMR90 cells were stained positive for senescence-associated β-galactosidase (Fig. 4C). Analysis of indirect immunofluorescence with anti-2meR17 antibody revealed that the number of IMR90 cells with the altered methylated TRF2 staining increased substantially as IMR90 cells aged in culture (Fig. 4D and 4E). While less than 4% of IMR90 (p27) cells showed the altered nuclear staining of methylated TRF2, the altered methylated staining was observed in over 73% of senescent IMR90 (p40) cells (Fig. 4E). On the other hand, we did not detect any significant accumulation of the altered staining of methylated TRF2 in cancer and transformed cell lines including HeLa and WI38VA13/2RA (Fig. 3F). Collectively, these results suggest that the altered nuclear staining of methylated TRF2 is a general characteristic associated with replicative senescence.

	[image: The altered nuclear staining of methylated TRF2 is a general characteristics of replicative senescence. (A) Growth curve of IMR90 cells. IMR90 cells (p22) were passaged every four days continously for 72 days. (B) Quantification of percentage of IMR90 cells with BrdU incorporation. A total number of 952, 1027, 1146, 1720 and 1418 cells were scored for passages 27, 31, 35, 36 and 40, respectively. (C) Quantification of percentage of IMR90 cells with senescence-associated β-galactosidase staining. A total number of 1887, 1606, 1286, 1712 and 1047 cells were scored for passages 27, 31, 35, 36 and 40, respectively. (D) Analysis of indirect immunofluorescence with anti-2meR17 antibody in senescent IMR90 (p40) cells. Cell nuclei were stained with DAPI in blue. (E) Quantification of percentage of IMR90 cells with altered nuclear staining of methylated TRF2. A total number of 952, 1027, 1146, 1720 and 1418 cells were scored for passages 27, 31, 35, 36 and 40, respectively.]

	Figure 4. The altered nuclear staining of methylated TRF2 is a general characteristics of replicative senescence. (A) Growth curve of IMR90 cells. IMR90 cells (p22) were passaged every four days continously for 72 days. (B) Quantification of percentage of IMR90 cells with BrdU incorporation. A total number of 952, 1027, 1146, 1720 and 1418 cells were scored for passages 27, 31, 35, 36 and 40, respectively. (C) Quantification of percentage of IMR90 cells with senescence-associated β-galactosidase staining. A total number of 1887, 1606, 1286, 1712 and 1047 cells were scored for passages 27, 31, 35, 36 and 40, respectively. (D) Analysis of indirect immunofluorescence with anti-2meR17 antibody in senescent IMR90 (p40) cells. Cell nuclei were stained with DAPI in blue. (E) Quantification of percentage of IMR90 cells with altered nuclear staining of methylated TRF2. A total number of 952, 1027, 1146, 1720 and 1418 cells were scored for passages 27, 31, 35, 36 and 40, respectively.

	Altered nuclear staining of methylated TRF2 is associated with the altered nuclear structure in senescent cells

	It has been reported that senescent and aged cells are associated with distorted nuclear defects [11, 12, 44]. We examined 1182 senescent GM9503 (p48) cells and found that over 96% of the nuclei with altered methylated TRF2 staining contained blebbings and/or herniations, suggesting that the altered methylated TRF2 staining is overwhelmingly associated with misshapen nuclei. Lamin A has been suggested to serve as a marker for distorted nuclear defects in aged cells [11, 12] and thus we also examined the relationship between the altered methylated TRF2 staining and Lamin A staining in senescent GM9503 (p48) cells. In young GM9503 (p21) cells, we observed strong Lamin A staining associated with the nuclear periphery as well as less intense Lamin A staining in the nucleoplasm (Fig. 5A). However, as cells aged in culture, we observed the appearance of line-shaped Lamin A staining in the nucleus. We found that in the senescent GM9503 (p48) culture, over 85% of cells exhibited line-shaped Lamin A/C staining (Fig. 5B). Analysis of dual indirect immunofluorescence with anti-2meR17 antibody in conjunction with either anti-Lamin A or anti-Lamin A/C antibody revealed that the line-shaped Lamin A staining overlapped well with the altered methylated TRF2 staining in GM9503 cells (Fig. 5C and 5D). The overlap between the altered nuclear staining of methylated TRF2 and the line-shaped Lamin A staining was also observed in senescent IMR90 (p40) cells (Fig. 5E). We examined 1073 nuclei of senescent GM9503 (p48) cells and found that 88% of nuclei had both the altered methylated TRF2 staining and the line-shaped Lamin A staining. Taken together, these results suggest that the altered nuclear staining of methylated TRF2 is predominantly associated with senescence-induced distorted nuclear structure.

	[image: The altered nuclear staining of methylated TRF2 is associated with altered nuclear structure in senescent cells. (A) Analysis of indirect immunofluorescence with anti-Lamin A/C antibody on young (p26) and senescent GM9503 (p48) cells. Cell nuclei were stained with DAPI in blue. (B) Quantification of percentage of GM9503 cells showing nuclear Lamin A staining that are either line-shaped or not associated with lines. A total number of 1014, 1050 and 1073 cells were scored for passages 21, 26 and 48, respectively. (C) Analysis of dual indirect immunofluorescence in late passage GM9503 (p45) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A antibody. Cell nuclei were stained with DAPI in blue. (D) Analysis of dual indirect immunofluorescence in senescent GM9503 (p48) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A/C antibody. Cell nuclei were stained with DAPI in blue. (E) Analysis of dual indirect immunofluorescence in senescent IMR90 (p40) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A/C antibody. Cell nuclei were stained with DAPI in blue.]

	Figure 5. The altered nuclear staining of methylated TRF2 is associated with altered nuclear structure in senescent cells. (A) Analysis of indirect immunofluorescence with anti-Lamin A/C antibody on young (p26) and senescent GM9503 (p48) cells. Cell nuclei were stained with DAPI in blue. (B) Quantification of percentage of GM9503 cells showing nuclear Lamin A staining that are either line-shaped or not associated with lines. A total number of 1014, 1050 and 1073 cells were scored for passages 21, 26 and 48, respectively. (C) Analysis of dual indirect immunofluorescence in late passage GM9503 (p45) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A antibody. Cell nuclei were stained with DAPI in blue. (D) Analysis of dual indirect immunofluorescence in senescent GM9503 (p48) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A/C antibody. Cell nuclei were stained with DAPI in blue. (E) Analysis of dual indirect immunofluorescence in senescent IMR90 (p40) with anti-TRF2-2meR17 antibody in conjunction with anti-Lamin A/C antibody. Cell nuclei were stained with DAPI in blue.

	Overexpression of hTERT prevents the formation of senescence-induced altered nuclear staining of methylated TRF2

	Overexpression of hTERT can prevent replicative senescence, resulting in immortalization of normal primary fibroblasts [45, 46]. To investigate whether hTERT may repress the formation of the altered nuclear staining of methylated TRF2, we introduced hTERT into GM9503 cells of passage 38 (p38) and cultured hTERT-GM9503 cells in parallel with parental GM9503 cells (p38) until GM9503 cells approached replicative senescence at p47 (Fig. 6A). Exogenous expression of hTERT was sufficient to immortalize GM9503 cells and prevented telomere shortening associated with replicative senescence (Fig. 6B). Analysis of indirect immunofluorescence with anti-2meR17 antibody revealed an induction of an altered nuclear staining of methylated TRF2 in GM9503 cells at passage 47 compared to those at passage 39 (Fig. 6C and 6D), consistent with our earlier finding. On the other hand, no increase in the altered nuclear staining of methylated TRF2 was observed in hTERT-immortalized GM9503 cells. Instead, we detected a 30% decrease (P=0.005) in the number of hTERT-GM9503 cells with an altered nuclear staining of methylated TRF2 when compared to GM9503 cells of passage 39 (Fig. 6D). These results suggest that overexpression of hTERT suppresses the formation of replicative senescence-induced altered nuclear staining of methylated TRF2.

	[image: Introduction of hTERT into normal primary fibroblast cells suppresses the formation of senesence-associated altered nuclear staining of methylated TRF2. (A) Schematic diagram of the experimental setup. At day 0, GM9503 cells were infected with retrovirus expressing hTERT, generating hTERT-GM9503 cells. Both GM9503 and hTERT-GM9503 cells were cultured continuously for 67 days. (B) Genomic blots of telomeric restriction fragments from GM9503 (p38), GM9503 (p47) and hTERT-GM9503 at day 67. About 3 μg of RsaI/HinfI-digested genomic DNA from each sample was used for gel electrophoresis. The DNA molecular size markers are shown to the left of the blots. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 antibody. Cell nuclei of GM9503 and hTERT-GM9503 were stained with DAPI in blue. (D) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. At least 900 cells in triplicate were scored in blind for each cell line as indicated. Standard deviations from three independent experiments are indicated.]

	Figure 6. Introduction of hTERT into normal primary fibroblast cells suppresses the formation of senesence-associated altered nuclear staining of methylated TRF2. (A) Schematic diagram of the experimental setup. At day 0, GM9503 cells were infected with retrovirus expressing hTERT, generating hTERT-GM9503 cells. Both GM9503 and hTERT-GM9503 cells were cultured continuously for 67 days. (B) Genomic blots of telomeric restriction fragments from GM9503 (p38), GM9503 (p47) and hTERT-GM9503 at day 67. About 3 μg of RsaI/HinfI-digested genomic DNA from each sample was used for gel electrophoresis. The DNA molecular size markers are shown to the left of the blots. (C) Analysis of indirect immunofluorescence with anti-TRF2-2meR17 antibody. Cell nuclei of GM9503 and hTERT-GM9503 were stained with DAPI in blue. (D) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. At least 900 cells in triplicate were scored in blind for each cell line as indicated. Standard deviations from three independent experiments are indicated.

	Dysfunctional telomeres induce the formation of the altered nuclear staining of methylated TRF2

	In addition to programmed telomere shortening, dysfunctional telomeres resulting from disruption of TRF2 function can also induce cellular senescence [26, 28, 29]. It has been well documented that overexpression of TRF2 lacking the N-terminal basic/GAR domain (TRF2-ΔB) promotes telomere rapid deletion whereas overexpression of TRF2 lacking both the N-terminal basic/GAR and C-terminal Myb-like DNA binding domains (TRF2-ΔBΔM) induces the formation of telomere fusions, both of which result in the induction of cellular senescence [26, 28]. Overexpression of TRF2 carrying amino acid substitutions of arginines to lysines in its N-terminal domain (TRF2-RK) has been shown to induce fragile telomeres, triggering cellular senescence [29]. To investigate whether the altered nuclear staining of methylated TRF2 might be associated with cellular senescence induced by dysfunctional telomeres, we infected GM9503 (p23) cells with retrovirus expressing TRF2-RK, TRF2-ΔB, TRF2-ΔBΔM or the vector alone. Fourteen days post infection (Fig. 7A), we observed an induction of cellular senescence in GM9503 cells overexpressing either TRF2-RK, TRF2-ΔB or TRF2-ΔBΔM but not in GM9503 cells expressing the vector alone (Fig. 7B), consistent with previous reports [26, 28, 29]. Analysis of indirect immunofluorescence revealed a drastic accumulation of the altered nuclear staining of methylated TRF2 in GM9503 cells overexpressing either TRF2-RK, TRF2-ΔB or TRF2-ΔBΔM when compared to GM9503 cells expressing the vector alone (Fig. 7C and 7D). Overexpression of TRF2-RK, TRF2-ΔB or TRF2-ΔBΔM had little effect on the level of endogenous methylated TRF2 (Fig. 7E). These results suggest that the altered nuclear staining of methylated TRF2 is associated with cellular senescence induced by dysfunctional telomeres.

	[image: Dysfunctional telomeres induce altered nuclear staining of methylated TRF2. (A) Schematic diagram of experimental setup. GM9503 cells (p23) were infected with retrovirus expressing various TRF2 mutant alleles at day -6. After the three-day selection ended on day 0, the cells were cultured for 14 days and then subjected to analysis of immunofluorescence (IF) and cellular senescence. (B) Senescence-associated β-galactosidase assays of GM9503 cells overexpressing the vector alone or various TRF2 mutant alleles as indicated. (C) Indirect immunofluorescence with anti-TRF2-2meR17 antibody in fixed GM9503 cells overexpressing the vector alone or various TRF2 mutant alleles as indicated. Cell nuclei were stained with DAPI in blue. (D) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind for each cell line. Standard deviations from three independent experiments are indicated. (E) Western analysis of GM9503 cells overexpressing various TRF2 mutant alleles as indicated. Immunoblotting was carried out with anti-TRF2, anti-TRF2-2meR17 or anti-γ-tubulin antibody.]

	Figure 7. Dysfunctional telomeres induce altered nuclear staining of methylated TRF2. (A) Schematic diagram of experimental setup. GM9503 cells (p23) were infected with retrovirus expressing various TRF2 mutant alleles at day -6. After the three-day selection ended on day 0, the cells were cultured for 14 days and then subjected to analysis of immunofluorescence (IF) and cellular senescence. (B) Senescence-associated β-galactosidase assays of GM9503 cells overexpressing the vector alone or various TRF2 mutant alleles as indicated. (C) Indirect immunofluorescence with anti-TRF2-2meR17 antibody in fixed GM9503 cells overexpressing the vector alone or various TRF2 mutant alleles as indicated. Cell nuclei were stained with DAPI in blue. (D) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind for each cell line. Standard deviations from three independent experiments are indicated. (E) Western analysis of GM9503 cells overexpressing various TRF2 mutant alleles as indicated. Immunoblotting was carried out with anti-TRF2, anti-TRF2-2meR17 or anti-γ-tubulin antibody.

	DNA damage induces the formation of the altered nuclear staining of methylated TRF2 in an ATM-dependent manner

	Stress induced premature senescence is known to be a DNA damage response [47] and therefore we asked whether the altered nuclear staining of methylated TRF2 might be associated with DNA damage-induced senescence. To address this question, GM9503 cells (p23) were either mock-treated or treated with 12 Gy ionizing irradiation (IR). We found that 48 h post IR, all GM9503 cells entered cellular senescence as evidenced by analysis of senescence-associated β-galactosidase assays (Fig. 8A). Analysis of indirect immunofluorescence with anti-2meR17 revealed an over 3-fold induction in the number of GM9503 cells with the altered staining of methylated TRF2 48 h post 12 Gy IR (Fig. 8B and 8C). We did not detect any significant change in the level of methylated TRF2 (Fig. 8D). Collectively, these results suggest that the altered nuclear staining of methylated TRF2 is associated with DNA damage-induced cellular senescence.

	[image: Ionizing radiation induces altered nuclear staining of methylated TRF2 in a ATM-dependent manner. (A) Ionizing radiation induces cellular senescence in GM9503 cells. GM9503 (p23) cells were treated with 12 Gy IR. Senescence-associated β-galactosidase assays were performed 48 h post IR. (B) Indirect immunofluorescence with anti-TRF2-2meR17 antibody in mock- or IR-treated GM9503 cells (p23). Cell nuclei were stained with DAPI in blue. (C) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind for untreated or IR-treated cells fixed at various time points post IR as indicated. Standard deviations from three independent experiments are indicated. (D) Western analysis of GM9503 cells (p23) that were either mock- or IR-treated. Immunoblotting was performed with anti-TRF2-2meR17 or anti-TRF2 antibody. The γ-tubulin blot was used as a loading control. (E) ATM inhibition abrogates IR-induced altered nuclear staining of methylated TRF2. GM9503 cells (p23) were treated with DMSO or KU55933 prior to 12 Gy IR treatment. Forty-eight hours post IR, cells were processed for indirect immunofluorescence with anti-TRF2-2meR17 antibody. Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind. Standard deviations from three independent experiments are indicated. (F) Little IR-induced altered nuclear staining of methylated TRF2 is observed in AT2RO cells lacking functional ATM. Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind. Standard deviations from three independent experiments are indicated. (G) Sequential extraction of the nuclear matrix from GM9503 cells treated with either DMSO or KU55933. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody. (H) Sequential extraction of the nuclear matrix from AT2RO cells that were either untreated or treated with 12 Gy IR. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody.]

	Figure 8. Ionizing radiation induces altered nuclear staining of methylated TRF2 in a ATM-dependent manner. (A) Ionizing radiation induces cellular senescence in GM9503 cells. GM9503 (p23) cells were treated with 12 Gy IR. Senescence-associated β-galactosidase assays were performed 48 h post IR. (B) Indirect immunofluorescence with anti-TRF2-2meR17 antibody in mock- or IR-treated GM9503 cells (p23). Cell nuclei were stained with DAPI in blue. (C) Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind for untreated or IR-treated cells fixed at various time points post IR as indicated. Standard deviations from three independent experiments are indicated. (D) Western analysis of GM9503 cells (p23) that were either mock- or IR-treated. Immunoblotting was performed with anti-TRF2-2meR17 or anti-TRF2 antibody. The γ-tubulin blot was used as a loading control. (E) ATM inhibition abrogates IR-induced altered nuclear staining of methylated TRF2. GM9503 cells (p23) were treated with DMSO or KU55933 prior to 12 Gy IR treatment. Forty-eight hours post IR, cells were processed for indirect immunofluorescence with anti-TRF2-2meR17 antibody. Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind. Standard deviations from three independent experiments are indicated. (F) Little IR-induced altered nuclear staining of methylated TRF2 is observed in AT2RO cells lacking functional ATM. Quantification of percentage of cells with altered nuclear staining of methylated TRF2. A total of 1000 cells in triplicate were scored in blind. Standard deviations from three independent experiments are indicated. (G) Sequential extraction of the nuclear matrix from GM9503 cells treated with either DMSO or KU55933. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody. (H) Sequential extraction of the nuclear matrix from AT2RO cells that were either untreated or treated with 12 Gy IR. Immunoblotting was performed with anti-TRF2-2meR17, anti-TRF2 or anti-Lamin A antibody.

	ATM is a master regulator of DNA damage response following ionizing radiation [40, 41] and therefore we also examined whether IR-induced altered nuclear staining of methylated TRF2 might be dependent upon the ATM-mediated DNA damage response. GM9503 cells (p23) were treated with DMSO or KU55933, a potent and specific ATM inhibitor [48], prior to 12 Gy IR. Analysis of indirect immunofluorescence with anti-2meR17 antibody revealed that treatment with KU55933 impaired the induction of IR-induced altered nuclear staining of methylated TRF2 (Fig. 8E). The impairment of IR-induced altered nuclear staining of methylated TRF2 was also observed in primary ataxia telangiectasia (AT) fibroblast cells (AT2RO) lacking functional ATM (Fig. 8F). Treatment with KU55933 or loss of ATM did not affect the association of methylated TRF2 with the nuclear matrix (Fig. 8G and H). Taken together, these results suggest that ATM is important for the formation of IR-induced altered nuclear staining of methylated TRF2.

	Discussion

	In this report, we have shown that methylated TRF2 is associated with the nuclear matrix and that this localization is largely free of human telomeres. In addition we have uncovered that the nuclear staining of methylated TRF2 is drastically altered upon induction of cellular senescence and that this altered staining is predominantly associated with misshapen nuclei and abnormal nuclear matrix folds. Our findings suggest that methylated TRF2 can serve as a potential biomarker for cellular senescence.

	Through sequential extraction of the nuclear matrix, we have shown that the nuclear matrix contains a small amount of endogenous TRF1, TRF2 and hRap1, suggesting that components of the shelterin complex are associated with the nuclear matrix, in agreement with previous reports [10, 17]. We have previously estimated that about 1-5% of endogenous TRF2 is methylated by PRMT1 [29]. Our finding that the majority of methylated TRF2 is associated with the nuclear matrix suggests that arginine methylation plays an important role in regulating TRF2 interaction with the nuclear matrix.

	We have previously reported that overexpression of TRF2-RK carrying amino acid substitutions of arginines to lysines (TRF2-RK), which cannot undergo PRMT1-dependent arginine methylation [29], promotes the formation of telomeres with multiple telomere signals [29], also known as fragile telomeres [49, 50]. Our finding that methylated TRF2 is associated with the nuclear matrix raises a possibility that TRF2-RK-induced fragile telomeres might arise in part from its inability to interact with the nuclear matrix. As fragile telomeres are thought to result from a defect in telomere replication [49, 50], it would be of interest to know if the arginine methylation-dependent TRF2 interaction with the nuclear matrix might play a role in supporting efficient telomere replication.

	Although we have shown that methylated TRF2 co-fractionates with Lamin A, we have not been able to detect a direct interaction between TRF2 and Lamin A (T. Mitchell and X.-D. Zhu, unpublished data), suggesting that the association of methylated TRF2 with the nuclear matrix may not be mediated by Lamin A. While human telomeres are attached to the nuclear matrix [16], we have shown through indirect immunofluorescence that the punctate nuclear staining of methylated TRF2 is largely free of telomere signals, suggesting that methylated TRF2 interaction with the nuclear matrix is unlikely mediated through telomeric DNA. How methylated TRF2 interacts with the nuclear matrix remains unknown, but our finding nevertheless suggests that post-translational modification plays a role in regulating TRF2 interaction with the nuclear matrix. Future studies would be needed to investigate the nature of the punctate nuclear staining of methylated TRF2 observed in young primary cells and cancer cells.

	We have shown that methylated TRF2 exhibits an altered nuclear staining upon induction of replicative senescence in normal human primary fibroblasts and that this altered staining can be suppressed by overexpression of hTERT, suggesting that telomere erosion may be a trigger for the altered nuclear staining of methylated TRF2. It has been suggested that ionizing radiation (IR)- and oncogene-induced cellular senescence is caused by irreparable DNA damage at telomeres [51, 52]. Our observation that the altered nuclear staining of methylated TRF2 is associated with IR- and dysfunctional telomeres-induced cellular senescence further supports the notion that telomere damage resulting from either genotoxic insults or programmed telomere erosion is a major inducer of the altered nuclear staining of methylated TRF2.

	Using two independent antibodies against Lamin A, we have observed that senescent fibroblast cells (GM9503 and IMR90) exhibit abnormal line-shaped Lamin A staining, similar to the Lamin A staining previously reported for senescent human mesenchymal stem cells [11, 44]. Our finding that the altered nuclear staining of methylated TRF2 overlaps well with the abnomal line-shaped Lamin A staining suggests that the altered methylated TRF2 staining is associated with distorted nuclear structures in senescent cells. Our finding further implies that methylated TRF2 may serve as a potential biomarker for senescence-associated altered nuclear matrix.

	It has been well established that the ATM-dependent DNA damage response is needed for initiating and maintaining cellular senescence [53-56]. Consistent with previous reports [53-56], we have observed that primary AT2RO fibroblasts lacking functional ATM fail to undergo cell cycle arrest and start to die within days after ionizing radiation (T.R.H Mitchell and X.-D. Zhu, unpublished data). We have demonstrated that loss or inhibition of ATM abrogates IR-induced altered nuclear staining of methylated TRF2, indicating that the ATM-dependent DNA damage response is needed for the formation of the altered nuclear staining of methylated TRF2. Our finding suggests that the methylated TRF2 may serve as a potential biomarker for aging- and stress-induced cellular senescence.

	Methods

	DNA constructs and antibodies

	The retroviral construct expressing shRNA against PRMT1 (pRS-shPRMT1) has been previously described [29]. The retroviral construct expressing hTERT (pBabe-hTERT) was generously provided by Robert Weinberg, Whitehead Institute for Biomedical Research.

	Antibody specifically raised against TRF2 methylated at R17 (2meR17) has been previously described [29]. Antibodies against TRF1, TRF2 and hRap1 were kind gifts from Titia de Lange, Rockefeller University. Other antibodies used include Lamin A (Millipore), Lamin A/C (Cell Signaling), PRMT1 (Millipore) and H2A.X (Upstate).

	Cell culture and retroviral infection

	Cells were grown in DMEM medium with 10% fetal bovine serum (FBS) for HeLaI.2.11, 293T, WI38VA13/2RA, hTERT-BJ and Phoenix cells supplemented with non-essential amino acids, L-glutamine, 100 U/ml penicilin and 0.1 mg/ml streptomycin. Supplementary DMEM medium plus 15% FBS was used to culture normal primary human fibroblasts (IMR90, GM9503, AG02261 and GM1706) (Coriell) and ATM-deficient primary fibroblast AT2RO (a kind gift from Jan Hoeijmakers). For inhibition of ATM, cells were treated with KU55933 (20 μM, Sigma) for 3 h before 12 Gy ionizing irradiation treatment. Ionizing irradiation was delivered from a Cs-137 source at McMaster University (Gammacell 1000).

	Retroviral gene delivery was carried out essentially as described [29, 57]. Phoenix amphotropic retroviral packaging cells were transfected with the desired DNA constructs using Lipofectamine 2000 (Invitrogen) according to the manufacturer. At 36, 48, 60, 72, and 84 h post-transfection, the virus-containing medium was collected and used to infect cells in the presence of polybrene (4 μg/ml). Twelve hours after the last infection, puromycin (2 μg/ml) was added to the medium, and the cells were maintained in the selection media for the entirety of the experiments.

	Sequential extraction of nuclear matrix

	Extraction of nuclear matrix components was conducted essentially as described [58, 59]. Briefly, PBS-washed cells were resuspended in 5X pellet volume cytoskeleton (CSK) buffer (10 mM Pipes pH 6.8, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA, 2 mM vanadyl ribonucleoside complex, 1.2 mM phenylmethylsulfonyl fluoride, 1 mM DTT, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 10 μg/ml pepstatin and 0.5% Triton X-100). Following centrifugation at 1000g for 5 min, the cytoskeleton framework was further extracted by incubating the pellet in RSB-magik buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 2 mM vanadyl ribonucleoside complex, 1.2 mM phenylmethylsulfonyl fluoride, 1 mM DTT, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 10 μg/ml pepstatin, 1% Tween 20 and 0.5% sodium deoxycholate) for 5 min. Upon centrifugation, the pellet was treated with 30-50 U of RNase-free DNaseI (Fermentas) per 106 cells in digestion buffer (10 mM Pipes pH6.8, 50 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA, 2 mM vanadyl ribonucleoside complex, 1.2 mM phenylmethylsulfonyl fluoride, 1 mM DTT, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 10 μg/ml pepstatin and 0.5% Triton X-100) for 1 h at room temperature. Chromatin was then removed by elution with 0.25 M ammonium sulfate, leaving a complete nuclear matrix-intermediate filament scaffold containing nuclear ribonuclear-protein complexes [58]. The complete nuclear matrix was further extracted with 2M NaCl to release the outer nuclear matrix proteins, and in some cases followed by digestion with DNase-free RNase A to remove the core filaments of the matrix. All incubation and centrifugations were performed at 4°C except where indicated.

	Immunofluorescence

	Immunofluorescence was performed as described [29, 60, 61]. All cell images were recorded on a Zeiss Axioplan 2 microscope with a Hammamatsu C4742-95 camera and processed using the Openlab software package.

	For BrdU labeling, cells were seeded on and processed in 8-well chamber slides (Lab Tek). Two days later, cells were incubated for 6 hours in media containing 10 μM BrdU (Sigma) and then fixed at room temperature (RT) for 7 min in PBS-buffered 3% paraformaldehyde and 2% sucrose. Following permeablization at RT for 7 min in Triton X-100 buffer (0.5% Triton X-100, 20 mM Hepes-KOH, pH 7.9, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose), cells were incubated in 4M HCl for 10 min at RT. Cells were then processed for immunofluorescence as described [29,60, 61] using anti-BrdU antibody (Novus Biologicals) and anti-2meR17 antibody.

	Telomere length analysis and senescence-associated β-galactosidase assays

	For telomere length analysis, genomic DNA isolated from cells was digested with RsaI and HinfI and loaded onto a 0.7% agarose gel in 0.5xTBE. Blotting for telomeric fragments was carried out as described [62, 63].

	Senescence-associated (SA) β-galactosidase assays were carried out using the SA-β-gal senescence kit (Cell Signaling) according to the manufacturer's instructions. The cells were seeded two to four days prior to processing.

	Statistical analysis

	A student's two-tailed t test was used to derive all P values.
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	Abstract

	A minimally invasive test for early detection and monitoring of Alzheimer's and other neurodegenerative diseases is a highly unmet need for drug development and planning of patient care. Mild Cognitive Impairment (MCI) is a syndrome characteristic of early stages of many neurodegenerative diseases. Recently, we have identified two sets of circulating brain-enriched miRNAs, the miR-132 family (miR-128, miR-132, miR-874) normalized per miR-491-5p and the miR-134 family (miR-134, miR-323-3p, miR-382) normalized per miR-370, capable of differentiating MCI from age-matched control (AMC) with high accuracy. Here we report a biomarker validation study of the identified miRNA pairs using larger independent sets of age- and gender- matched plasma samples. The biomarker pairs detected MCI with sensitivity, specificity and overall accuracy similar to those obtained in the first study. The miR-132 family biomarkers differentiated MCI from AMC with 84%-94% sensitivity and 96%-98% specificity, and the miR-134 family biomarkers demonstrated 74%-88% sensitivity and 80-92% specificity. When miRNAs of the same family were combined, miR-132 and miR-134 family biomarkers demonstrated 96% and 87% overall accuracy, respectively. No statistically significant differences in the biomarker concentrations in samples obtained from male and female subjects were observed for either MCI or AMC. The present study also demonstrated that the highest sensitivity and specificity are achieved with pairs of miRNAs whose concentrations in plasma are highly correlated.

	Introduction

	The importance of early diagnosis, treatment and prevention of Alzheimer's disease attracts the attention of scientific and medical communities, regulatory agencies, such as the US Food and Drug Administration (FDA), and industry and government leaders in many countries [1-3]. The number of AD patients and those in high risk populations grows quickly, especially in developed countries, due to increased lifespan. A number of investigational anti-AD drugs, targeting various processes characteristic of AD pathogenesis, have failed in recent clinical trials [1,4-6], likely due to massive neuronal loss and advanced stages of the disease in the enrolled patients [3-5]. It has been demonstrated that AD dementia is preceded by 10-20 years of the disease development, initially without clinical symptoms (pre-symptomatic AD), and then manifested as MCI [7-9]. It is important to note that the detailed analysis of failed clinical trials has demonstrated a therapeutic benefit in the sub-groups of patients with mild and moderate symptoms of AD [6, see also https://investor.lilly.com/releaseDetail.cfm?ReleaseID=702211 and http://www.alzforum.org/new/detail.asp?id=3288]. The high need for development of new methods for early AD detection is also emphasized in recent publications from the FDA [10, see also http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338287.pdf] and the U.S. Department of Health and Human Services (“National Alzheimer's Project Act”, available at: http://aspe.hhs.gov/daltcp/napa/). Since cognitive testing cannot identify patients in pre-symptomatic stages of AD, effective biomarkers are necessary for successful patient stratification and treatment monitoring [3-5].

	Due to the Alzheimer's Disease Neuroimaging Initiative (ADNI) in the US (http://www.adni-info.org/) and similar projects in other countries, a significant progress in early detection of AD with high sensitivity and specificity by imaging techniques and analysis of protein biomarkers in cerebrospinal fluid has been achieved [7]. However, the high cost and invasiveness of these methods make their application for primary screening of large populations impractical [11]. Various approaches to the development of non-invasive or minimally invasive assays for early detection of AD have been tested [12-19]. Currently there is no reliable molecular test for diagnosing AD at the pre-symptomatic or MCI stage. Recently we proposed an approach for early detection of MCI based on analysis of cell-free circulating miRNAs in plasma by RT-qPCR [20]. Several innovations were demonstrated to be effective for selection of potential miRNA biomarkers. First, we hypothesized that changes in concentrations of circulating miRNAs enriched in the brain, and more specifically in hippocampus and frontal cortex, were more likely to reflect AD-associated pathologic processes in the brain than ubiquitous or other organ-enriched miRNAs. Second, we analyzed miRNAs present in neurites and synapses, dysfunction and destruction of which is characteristic of early stages of neurodegeneration, and therefore, could affect expression and secretion of these miRNAs. Third, to compensate for processes unrelated directly to MCI, e.g. changes in blood-brain barrier permeability, we used the “biomarker pair” approach [20-23] normalizing neurite/synapse miRNAs by other brain-enriched miRNAs, which could be expressed in brain areas or cell types not involved in early stages of AD and MCI, as well as miRNAs with levels in plasma changing differently when compared with neurite/synapse miRNAs. Two sets of biomarker pairs, miR-132 (miR-128/miR-491-5p, miR-132/miR-491-5p and miR-874/miR-491-5p) and miR-134 (miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370), capable of differentiating MCI from AMC with sensitivity and specificity of 79%-100% were identified. In a separate small longitudinal study, the identified biomarker miRNA pairs successfully detected MCI in a majority of patients at the asymptomatic stage 1-5 years prior to clinical diagnosis. These miRNA pairs also differentiated AD from AMC (P<0.001) and appeared effective in detecting age-related brain changes in younger and older controls. Thus, while biomarkers of miR-132 and miR-134 sets do not seem to be specific to AD, they detect some common processes (possibly neurite/synapse dysfunction and destruction), characteristic of AD and other neurodegenerative diseases, and are capable of detecting MCI early. The initial report described analysis of 30 plasma samples in each group (AMC, MCI and AD; 10 in the pilot study for miRNA selection, and 20 in the feasibility study); all plasma samples were collected at the Roskamp Institute (Sarasota, FL).

	In the present biomarker validation study we analyzed new larger sets of gender- and age-matched plasma samples (50 MCI and 50 AMC) collected at different sites.

	Results

	Biomarker validation

	The concentrations of 8 miRNAs were measured by RT-qPCR analysis in plasma samples from 50 MCI patients and 50 AMC subjects (Table 1). The ratios for miRNAs from the miR-132 family to miR-491-5p and for miRNAs from the miR-134 family to miR-370 (2−ΔCt) are presented as box-plots in Fig. 1 and 2, respectively. Fig. 3 presents Receiver-Operating Characteristic (ROC) curves for miR-132 and miR-134 families. The area under the ROC curve (AUC) for miR-128/miR-491-5p, miR-132/miR-491-5p and miR-874/miR-491-5p is 0.97, 0.97 and 0.98, respectively. These biomarker pairs (Set 1) differentiated MCI from AMC with 84%-94% sensitivity and 96%-98% specificity (Table 2). Further, biomarker pairs miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370 (Set 2) demonstrated 74%-88% sensitivity and 80-92% specificity (Table 2). AUC for miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370 are 0.92, 0.92 and 0.89, respectively. Combining biomarker miRNA pairs within the same set further improves sensitivity and specificity (Fig. 3 and Table 2). Combining biomarker miRNA pairs from miR-132 and miR-134 sets results in sensitivity and specificity that range between values obtained for the two sets of biomarker pairs.

	Table 1. Demographics of plasma donors

	
		
				Clinical Diagnosis

				Number of Subjects

				Age

				Sex

				MMSE

		

		
				Mean

				Range

				Male

				Female

				(mean±SD)

		

		
				AMC

				50

				65.1

				50-82

				26

				24

				29.6 ± 0.6

		

		
				MCI

				50

				68.2

				51-82

				21

				29

				26.0 ± 1.4
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	Figure 1. miR-132 family biomarker pairs in plasma of AMC and MCI subjects. The concentrations of miRNA in plasma samples of MCI and age-matched donors with normal cognitive function, 50 samples in each group, were measured by RT-PCR and the ratios of various miRNA were calculated as 2−ΔCt × 100. Here and in other figures with box and whisker plots the results are presented in the Log10 scale. The upper and lower limits of the boxes and the lines inside the boxes indicate the 75th and 25th percentiles and the median, respectively. The upper and lower horizontal bars denote the 90th and 10th percentiles, respectively. The points indicate assay values located outside of 80% data. AMC: age-matches controls; MCI: MCI patients.
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	Figure 2. miR-134 family biomarker pairs in plasma of AMC and MCI subjects. The concentrations of miRNA in plasma samples of MCI and age-matched donors with normal cognitive function, 50 samples in each group, were measured by RT-PCR and the ratios of various miRNA were calculated as 2−ΔCt × 100. See the legend to Fig. 1 for the description of the box and whisker plots. AMC: age-matches controls; MCI: MCI patients.
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	Figure 3. Receiver-Operating Characteristic (ROC) curve analysis of differentiation between MCI patients and age-matched controls obtained with different biomarker pairs. The areas under the ROC curve (AUC), sensitivity, specificity and accuracy for each biomarker/normalizer pair presented in Table 2 are calculated for the “cutoff” point (indicated as a dot on each plot) – the value of the ratio of paired miRNA where the accuracy of predictions is the highest (see Materials and Methods).

	Table 2. Differentiation of MCI from AMC by miRNA biomarker pairs

	
		
				Family/normalizer

				miRNA

				AUC

				Sensitivity

				Specificity

				Accuracy

				P-value (MCI vs. AMC)

		

		
				miR-132/miR-491-5p

				miR-128

				0.97

				84%

				96%

				90%

				3.53E-16

		

		
				miR-132

				0.97

				88%

				98%

				93%

				1.60E-15

		

		
				miR-874

				0.98

				94%

				96%

				95%

				3.16E-16

		

		
				3 pairs

				0.98

				96%

				96%

				96%

				1.51E-16

		

		
				miR-134/miR-370

				miR-134

				0.92

				86%

				82%

				84%

				1.55E-12

		

		
				miR-323-3p

				0.92

				88%

				80%

				84%

				9.46E-13

		

		
				miR-382

				0.89

				76%

				90%

				83%

				5.37E-11

		

		
				3 pairs

				0.93

				80%

				94%

				87%

				2.29E-12

		

		
				miR-132/370

				miR-128

				0.80

				62%

				82%

				72%

				7.10E-7

		

		
				miR-132

				0.82

				74%

				76%

				75%

				3.57E-8

		

		
				miR-874

				0.85

				88%

				64%

				76%

				1.92E-9

		

		
				3 pairs

				0.83

				86%

				66%

				76%

				1.30E-8

		

		
				miR-134/miR-491-5p

				miR-134

				0.65

				36%

				88%

				62%

				1.00E-2

		

		
				miR-323-3p

				0.63

				38%

				88%

				63%

				2.08E-2

		

		
				miR-382

				0.63

				38%

				80%

				59%

				2.97E-2

		

		
				3 pairs

				0.65

				36%

				88%

				62%

				1.82E-2

		

	

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	It is important to analyze factors that could affect the test accuracy. The data presented in Figs. 4 and S1 and Table 3 show no statistically significant difference between female and male cohorts of AMC and MCI samples, although a trend toward slightly higher accuracy for MCI differentiation from AMC in the male cohort by miRNA pairs from the miR-132 family is observed, and the opposite trend is observed for miRNA pairs of the miR-134 family.
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	Figure 4. Receiver-Operating Characteristic (ROC) curve analysis of differentiation between MCI patients and age-matched controls obtained with different biomarker pairs in male (a, b) and female (c, d) cohorts. The areas under the ROC curve (AUC), sensitivity, specificity and accuracy for each biomarker/normalizer pair presented in Table 3 are calculated for the “cutoff” point – the value of the ratio of paired miRNA where the accuracy of predictions is the highest.

	Table 3. Comparison of biomarker miRNA pairs of miR-132 and miR-134 families in male and female subjects

	
		
				Male

		

		
				miRNA pair

				128a/491-5p

				132/491-5p

				874/491-5p

				miR-132 Fam. combined

				134/370

				323-3p/370

				382/370

				miR-134 Fam. combined

		

		
				AUC

				0.97

				0.99

				1.00

				0.99

				0.91

				0.89

				0.86

				0.90

		

		
				Female

		

		
				AUC

				0.98

				0.97

				0.97

				0.98

				0.94

				0.95

				0.95

				0.96

		

		
				Male – Female Comparison

		

		
				P-value

				0.763

				0.479

				0.201

				0.686

				0.601

				0.315

				0.167

				0.285

		

	

	A role of miRNA normalizer

	Selection of an optimal denominator (normalizer) for each miRNA family was shown to be essential [20]. miR-491-5p and miR-370 were found to be effective when paired with miRNAs of the miR-132 and miR-134 families, respectively. This finding has been further tested in the present study. Figs. S2-S4 and Table 2 show that if normalizers are switched between the two families, pairs miR-128/miR-370, miR-132/miR-370, miR-874/miR-370, miR-134/miR-491-5p, miR-323-3p/miR-491-5p and miR-382/miR-491-5p differentiate MCI from AMC with much lower sensitivity and specificity. Concentrations of miRNAs in plasma depend on numerous factors, including (i) levels of miRNA expression in various organs and tissues; (ii) levels of miRNA secretion from different cell types; (iii) stability of miRNAs in extracellular space and their appearance in plasma in different forms, such as exosomes and other micro-vesicles, complexes with proteins, lipids and, possibly, other molecules; and (iv) blood-brain barrier permeability for brain-enriched miRNAs. A pathological process may affect some or all of these factors. It is, therefore, logical to expect that a numerator and a denominator of an effective biomarker miRNA pair should share some of these basic common factors (e.g. both are brain-enriched and secreted in exosomes) and would change differently in response to a pathology). In such cases, one can expect a high correlation between miRNAs of miR-132 and miR-134 families and their optimal respective normalizers, miR-491-5p and miR-370. Data presented in Fig. 5 demonstrate that in the AMC cohort Spearman test r values for the correlation between miRNAs of the miR-132 family with miR-491-5p are in the 0.95-0.96 range and for the correlation between miRNAs of the miR-134 family with miR-370 are in the 0.97-0.98 range. In the MCI cohort, the correlation between the same miRNAs is slightly lower, indicating that the pathology differently affects plasma levels of miRNAs of the miR-132 family and of miR-491-5p, as well as levels of miRNAs of the miR-134 family and of miR-370. Correlations between neurite/synapse-enriched miRNAs from one family with the optimal normalizer of another family are significantly weaker (Fig. S5).
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	Figure 5. Analysis of correlation between members of miR-132 and miR-134 families and their optimal normalizers miR-491-5p and miR-370, respectively. Spearman's rank correlation coefficient r along with 95% confidence intervals (MIN & MAX) is shown for AMC (blue dots) and MCI (red dots) subjects.

	Discussion

	The main objective of the present work was to validate previously identified sets of plasma biomarker miRNA pairs [20] in a larger study with clinical samples collected at sites different from the one used in the original study. The data have validated miRNAs of the miR-132 and miR-134 families, paired with miR-491-5p and miR-370 respectively, as highly sensitive biomarkers for detection of MCI. The overall accuracy for differentiating MCI from AMC is 90%-96% and 83%-87% for the biomarker miRNA pairs of miR-132 and miR-134 sets, respectively. The corresponding values obtained in the first feasibility study were 86% – 92% and 82% – 89%. Since a large number of MCI patients will progress to AD dementia [24-26], it is reasonable to suggest that these biomarker pairs detect early stages of AD as well, although they do not differentiate AD from MCI caused by other conditions. As was the case in the feasibility study, the miR-132 family biomarkers detected MCI with higher accuracy than the miR-134 family biomarkers. Although the roles of most miRNAs tested in this study in neuronal differentiation, function and pathology have not been elucidated yet, it has been demonstrated that miR-132 and miR-134 have opposite effect on neurons: miR-132 stimulates [27,28] and miR-134 [29] inhibits neurite growth. Also, the level of miR-132 has been shown to be lower in the hippocampus and temporal neocortex of AD patients [30,31]. Lau et al. [32] have demonstrated that downregulation of miR-132 occurs at Braak stages III and IV, prior to loss of neuron specific miRNAs. They have also found that deregulation of miR-132-3p in the AD brain appears to occur mainly in neurons displaying Tau hyper-phosphorylation and that the transcription factor FOX01a is a key target of miR-132 in the Tau network. Interestingly, the concentration of miR-128, which promotes neuronal maturation [33], has been shown to increase in the hippocampus in an intermediate stage and to decrease in a late stage of AD [34,35]. Aging-associated increase in the concentrations of miR-134 and miR-874 in serum has been demonstrated [36]. We plan to further analyze the utility of both sets of biomarker miRNA pairs for MCI detection in larger longitudinal studies.

	The present study has not shown statistically significant differences between male and female cohorts in differentiating MCI from AMC, suggesting that a combined control group could be used in further studies. These results need to be confirmed in larger follow-on studies.

	The present study further validated the use of effective “miRNA pairs”, i.e. pairing of an optimal miRNA normalizer (denominator in biomarker pair) with a particular miRNA as the numerator. In the previous study [20] we analyzed levels of neurite and/or synapse miRNAs and other brain-enriched miRNAs in plasma of MCI and AMC subjects, and then the ability of all possible miRNA pairs to differentiate MCI from AMC was tested. Neurite/synapse miRNAs (miR-132 and miR-134 families) were found to be the best nominators in the identified and selected biomarker pairs. These data supported our initial hypothesis: neurite/synapse miRNAs can be effective biomarkers of neuro-degeneration, because synapse dysfunction and subsequent neurite and synapse destruction are early events in the progression of neurodegenerative diseases. We also demonstrated that miR-491-5p was a preferred normalizer for the miR-132 family, and miR-370 was a preferred normalizer for the miR-134 family, although the nature of these preferences was not clear at the time. Here we have further analyzed this phenomenon and found that a high correlation between numerator and denominator of biomarker miRNA pair in plasma samples from different subjects is an important parameter for their compatibility. It is currently unclear on what factors such a correlation depends, since many factors likely affect concentrations of cell-free miRNAs in plasma. Intuitively, it seems reasonable to suggest that an efficient miRNA pair should include two plasma miRNAs, which share common properties (for example, miRNAs secreted/excreted by the same mechanism, miRNAs bound to the same protein in plasma or present in similar exosomes, etc.), but differ in their response to investigated pathology. Hence, correlation analysis could be a useful approach for selecting the effective biomarker pairs among bodily fluid miRNAs for various diagnostic applications.

	Thus, the present study has validated two sets of plasma biomarker miRNA pairs for the early detection of MCI, providing a basis for a large longitudinal study for determining the biomarkers' ability to detect MCI and AD at pre-symptomatic stages. The described approach is complementary to other diagnostic technologies, such as neuroimaging and CSF analysis.

	Materials and Methods

	Plasma samples

	K2EDTA Plasma samples from 50 MCI patients and 50 AMC were obtained from a commercial vendor PrecisionMed (Solana Beach, California). The samples were collected in compliance with the Health Insurance Portability and Accountability Act (HIPAA) and a written consent was obtained from each subject. All samples were frozen at −20°C within 2 hours from collection, then transferred to −80°C, and stored and shipped at −80°C.

	MCI diagnosis was based on several tests evaluating cognition: (i) ADAS-Cog (Alzheimer's Disease Assessment Scale-Cognitive subscale; (ii) CDRS (Clinical Dementia Rating Scale); (iii) Wechsler Memory Scale; and (iv) MMSE (Mini Mental State Examination). MCI classification requirements included the following parameters: (i) 28 ≥ MMSE ≤ 22 (ii) not demented; (iii) memory complaint; (iv) preserved general cognitive function; (v) intact activities of daily living (allowed problems with 2 or less of the following: phone calls, meal preparation, handling money, completing chores); (vi) abnormal memory function documented by scoring below the education adjusted cutoff on the Logical Memory II subscale (delayed paragraph recall) from the Wechsler Memory Scale–Revised (maximum score = 25): (a) < 8 for 16 years or more of education; (b) < 4 for 8-15 years of education; (c) < 2 for 0-7 years of education. Patients with other neurological disorders were excluded from the study.

	Cognitive status of AMC subjects was also evaluated using metrics listed above. AMC subjects had MMSE scores of 29 or 30, maintained independent activities of daily living, and did not have a known history of neurological illnesses, psychiatric disorders, or other medical conditions that could potentially interfere with their cognitive performance.

	Demographic characteristics of the study groups are summarized in Table 1.

	Plasma RNA extraction and qRT-PCR miRNA analysis

	miRNA isolation and qRT-PCR analysis were performed by Asuragen Inc. (Austin, TX, USA) as previously described [20]. Briefly, RNA was extracted from 200 μl aliquots of plasma using Trizol treatment and silica binding. Single target qRT-PCR was performed using the TaqMan® Reverse Transcription Kit and miRNA specific stem-loop primers (Applied Biosystems, Foster City, CA, USA). The RT step was performed in triplicate and 2 μl plasma equivalents were present in final PCR.

	Bioinformatics analysis and statistical methods

	All statistical calculations were performed with the use of custom software developed at DiamiR LLC (Princeton, NJ), as previously described [16]. Briefly, Mann-Whitney U-tests were used to evaluate significance of differentiation of any two patient groups by various miRNA pairs, and Spearman's rank correlation coefficient was calculated to estimate associations between various miRNAs. Receiver-Operating Characteristic (ROC) curves were constructed and the area under ROC curves (AUC) was calculated to evaluate sensitivity and specificity of various biomarker sets. The cutoff points on the ROC curves, at which accuracy of MCI detection is maximal, were selected.
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	Abstract

	There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histochemical Sudan-Black-B (SBB) specific stain of lipofuscin, an aggregate of oxidized proteins, lipids and metals, known to accumulate in aged tissues, as an additional reliable approach to detect senescent cells independently of sample preparation. We analyzed cellular systems in which senescence was triggered by replicative exhaustion or stressful stimuli, conditional knock-in mice producing precancerous lesions exhibiting senescence, and human preneoplastic lesions known to contain senescent cells. In the above settings we demonstrated co-localization of lipofuscin and SA-β-gal in senescent cells in vitro and in vivo (cryo-preserved tissue), strongly supporting the candidacy of lipofuscin for a biomarker of cellular senescence. Furthermore, cryo-preserved tissues positive for SA-β-gal were formalin-fixed, paraffin-embedded, and stained with SBB. The corresponding SA-β-gal positive tissue areas stained specifically for lipofuscin by SBB, whereas tissues negative for SA-β-gal were lipofuscin negative, validating the sensitivity and specificity of the SBB staining to visualize senescent cells in archival material. The latter unique property of SBB could be exploited in research on widely available retrospective tissue material.

	Introduction

	Cellular senescence is the state of irreversible cellular growth arrest in which the cell remains metabolically active [1, 2]. Two types of cellular senescence have been described in mammalian cells [3]. Replicative Senescence (RS) that is triggered by the arrest of cellular proliferation after a certain number of divisions due to telomere attrition [1, 3] and Stress Induced Premature Senescence (SIPS) that is a more acute phenomenon in which the cells stop to proliferate under various stress conditions, regardless of telomere length [3]. The phenomenon of cellular senescence was originally described in vitro [4]. More recently, senescent cells were also identified in aged skin [2], benign tumors and premalignant lesions [5-9] as well as in age-related pathologies [10]. Also, the number of senescent fibroblasts reportedly increases exponentially in the skin of aging primates, reaching >15% of all cells in very old individuals [11]. The evidence so far from in vitro and in vivo studies suggests that cellular senescence acts as a tumor barrier, whereas it contributes to the processes of tissue aging and age-related diseases [12]. The significance of cellular senescence incarcinogenesis and age-related disorders, renders the detection of these phenomena essential. This urgent need of reliable biomarkers of senescence is even more apparent given the evidence for cellular senescence induced in response to anticancer therapy [13].

	The most widely used biomarker of cellular senescence reported so far is the detection of Senescence-Associatedβ-Galactosidase activity (SA-β-gal) in sub-optimal pH [2, 14]. Nevertheless, a major disadvantage in designinglarge-scale studies of cellular senescence in humanlesionsis that SA-β-gal staining requires fresh tissue as it is based on an enzymatic reaction [14]. This fact seriously limits the exploitation of the widely available formalin-fixed paraffin-embedded (FFPE) archival tissues, including tissue microarrays [1]. In an effort to establish a biomarker of cellular senescence that could be applicable for FFPE archival tissue material, we focused on lipofuscin, also known as an "age-pigment" [15]. Lipofuscin is an aggregate of oxidized proteins that accumulates progressively mostly in aged post mitotic cells [16]. It is considered a hallmark of aging and is also involved in the pathogenesis of certain age related pathologies such as macular degeneration [16]. Sudan Black B (SBB) is a lipophilic histochemical stain that identifies lipofuscin and is applicable for in vitro and in situ studies [17-19]. Here we employed SBB in a series of experiments designed to demonstrate that lipofuscin accumulates in vitro in normal human cells during RS or SIPS, as well as in stressed human cancer cells. Furthermore, we sought to identify lipofuscin deposits in benign lesions already known to contain senescent cells. As a control marker of the cellular senescence state we used the SA-β-gal assay. Our results show that the SBB-stained lipofuscin is present in all the cells that express SA-β-gal activity and it is absent in SA-β-gal-negative cells. Hence, SBB positivity could be used as an additional cellular senescence biomarker. Moreover, SBB staining was applicable in FFPE tissue sections, providing evidence that this assay can provide a reliable biomarker for detection of senescent cells in archival clinical material that is stored in paraffin.

	Results

	To assess the value of lipofuscin as a potential biomarker of cellular senescence in vitro, five cellular systems of normal diploid cells and cancer cells were applied. In these experimental settings cellular senescence was triggered by means of proliferative exhaustion (Replicative Senescence, RS) or Stress Induced Premature Senescence (SIPS). Specifically, we used young proliferating primary human diploid lung fibroblasts (DLF) (at passage 6), along with replicatively senescent cells (at passage 42) and cells (at passage 7) in which SIPS was triggered by γ-irradiation [20] (Fig. 1). The effect of p53 and p21WAF-1, two well established effectors of the senescence program, was studied in two inducible osteosarcoma cell lines, namely Saos-2 p21-Tet-ON and Saos-2 p53-Tet-ON [21-24]. After 8 days of p21WAF-1 or p53 induction senescent cells were evident (Fig. 2A, 3A). Finally, the inducible osteosarcoma U2OS E2F1-ER cell line was also tested. Over-expression of E2F1 has been shown to trigger SIPS via activation of the DNA damage response (DDR) pathway [25]. The induction of E2F1 yielded senescent cells in 10 days (Fig. 4A) as concluded by positive SA-β-gal staining.

	[image: Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in sub-confluent senescent primary human diploid lung fibroblasts (DLF)]

	Figure 1. Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in sub-confluent senescent primary human diploid lung fibroblasts (DLF). Y (Young): Early- passage cells, RS: Replicative-senescent cells and IS (irradiated): Early passage cells that became prematurely senescent after irradiation (12×4Gy). Collected cells were fixed on slides with 4% parafolmadehyde (A) All three cultures were stained with SA-β-gal and nuclear fast red as counterstain (NFR). Cells from RS and IS cultures acquired the characteristic senescent morphological phenotype (enlarged and flattened) and were positive for SA-β-gal staining (turquoise color). (B) All cultures were stained with Sudan Black B (SBB) and NFR. Cells from RS and IS cultures, which had the morphological phenotype of senescence, were also positive for SBB (dark blue-black granules). (C) Top panels: green pseudocolor represents visualization of lipofuscin's autofluorescence at 450-490 nm. Bottom panels: RS and IS cells that stained with SBB (BF, bright field microscopy) show no auto-fluorescence of lipofuscin (FM, fluorescence microscopy without pseudocolor), indicating that SBB stains lipofuscin. Cells with the morphological phenotype of senescence were positive for both SA-β-gal and SBB (D), while cells that were positive for Ki67 were negative for both SA-β-gal and SBB (E). Insets: Cells at higher magnification, pink dashed lines: indicate NFR-stained nuclei, brown dashed lines: indicate Ki67- negative nuclei, black arrows: show SBB granules.
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	Figure 2. Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in senescent Saos-2 cells triggered by p21WAF-1. (A) SA-β-gal staining (turquoise color) in the Saos-2 p21WAF-1 Tet-On cell system on the 8th day of doxycycline (5 μg/ml) addition. Inset: Senescent cells acquired the characteristic senescent morphological phenotype (enlarged and flattened). (B) Sudan Black B (SBB) positivity (dark blue-black granules) in cells with senescent morphological phenotype (inset). (C) Top panels: Lipofuscin's auto-fluorescence in induced Saos-2 p21WAF-1 Tet-On cells, by fluorescence microscopy at 450-490 nm (green pseudocolor). Bottom panels: Cytochemical SBB staining (BF, bright field microscopy) quenches the auto-fluorescence of lipofuscin (FM, fluorescence microscopy), indicating that SBB stains lipofuscin. SA-β-gal and SBB staining coincided in cells that had the morphological phenotype of senescence (D) and were absent in cells that were positive for the proliferative marker Ki67 (E). (F) Addition of doxycyclin (Dox) triggers p21WAF-1 expression. Brown dashed lines: Ki67- negative nuclei. Black arrows: SBB granules. NFR: nuclear fast red counterstain.
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	Figure 3. Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in p53-mediated Saos-2 senescent cells. (A) Senescent cells with the characteristic morphology (enlarged and flattened) and positivity for SA-β-gal staining (turquoise color), on the 8th day of induced with doxycycline of the Saos-2 p53 Tet-On system. (B) Sudan Black B (SBB) perinuclear accumulation as dark blue-black granules, in cells with senescent morphology. (C) Top panels: Perinuclear appearance of lipofuscin in apparently senescent cells: pseudocolor visualization of lipofuscin's auto-fluorescence (450-490 nm) is represented in green. Bottom panels: Lipofuscin's auto-fluorescence (FM, fluorescence microscopy) is masked by SBB staining (BF, bright field microscopy). (D) Co-localization of SA-β-gal and SBB staining in senescent cells and, (E) Ki67 positive cells are negative for SBB and SA-β-gal. (F) Addition of 5μg/ml doxycyclin (Dox) leads to p53 expression. Brown dashed lines: Ki67- negative nuclei, black arrows: SBB granules, NFR: nuclear fast red counterstain.
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	Figure 4. Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in E2F-1 induced U2OS senescent cells. (A) On the 10th day of induction with 4-OH-Tamoxifen, cells were positive for SA-β-gal activity (turquoise color); cells also demonstrated the morphological phenotype of senescence (enlarged and flattened) (B) Cells demonstrating the characteristic senescent phenotype show Sudan Black B (SBB) dark blue-black granules (C) Top panels: Lipofuscin's auto-fluorescence at 450-490 nm is represented in green pseudocolor. Bottom panels: blocking of lipofuscin auto-fluorescence (FM, fluorescence microscopy) with SBB staining (BF, bright field microscopy) indicates that SBB stains lipofuscin (D) Concurrent positivity for SA-β-gal activity and SBB staining in the same cell, which is also negative for the proliferative marker Ki67 (E). (F) Addition of 300 nmol/L 4-OH-Tamoxifen (4-OH-Tam) leads to nuclear translocation of E2F1 (indirect immunofluorescence). E2F1-negative nuclei are indicated with white dashed lines. Brown dashed lines: Ki67- negative nuclei, black arrows: SBB granules, NFR: nuclear fast red counterstain.

	In all the above systems cells that acquired the morphological features of senescence (i.e. became enlarged and flattened) were positive for SA-β-gal (Fig. 1A, 2A, 3A, 4A). These preparations were also stained with SBB and as illustrated in Fig. 1B, 2B, 3B and 4B all contained clearly visible perinuclear and cytoplasmic aggregates of lipofuscin, stained by SBB as dark blue-black granules. In addition, as lipofuscin produces auto-fluorescence, we could verify that the blue-black granules, stained by SBB, represented lipofuscin aggregates, by masking the lipofuscin's auto-fluorescence with SBB staining (Fig. 1C, 2C, 3C, 4C) [26]. This unique property of theSBB wasthe reason it was selected amongother methodsthat detectlipofuscin [19, 27]. To assess the extent of agreement between the results from the two assays, we performed SA-β-gal and SBB co-staining in the same cells. Indeed, co-staining results showed a complete overlap (Fig. 1D, 2D, 3D, 4D). Likewise, concomitant staining of SA-β-gal, SBB and the proliferative marker Ki67 verified that cells positive for lipofuscin and SA-β-gal activity were not proliferating (Fig. 1E, 2E, 3E, 4E).

	Next we examined whether SBB staining of lipofuscin could serve as a reliable senescence bio-marker in vivo. To this end the same experimental procedure was followed in frozen tissue sections from mice lung adenomas. The lung adenomas were developed in a mouse model expressing conditionally K-rasV12in the lung [5], one of the first in vivo settings used to demonstrate the role of senescence as an anti-tumor barrier in premalignant lesions [5]. In line with the in vitro findings, the lung adenomas that demonstrated strong SA-β-gal activity stained positive for lipofuscin while normal lung tissues were negative (Fig. 5). Next, we examined frozen human samples from patients with benign prostatic hyperplasia (BPH) from enlarged prostates (>55gr). These lesions had been previously shown to feature senescence [7, 28]. As shown in Fig.6, SA-β-gal activity and SBB staining co-localized, whereas adjacent normal prostatic glands were negative.
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	Figure 5. Lipofuscin and Senescence-Associated beta-galactosidase (SA-β-gal) activity co-localize in lung adenomas demonstrating senescence in a mouse model conditionally expressing K-rasV12 in the lung. Frozen sections derived from mouse lung K-rasV12 adenomas. (A) Cells from the adenomas show SA-β-gal activity. (B) Characteristic perinuclear deposition of blue black granules in cells stained with Sudan Black B (SBB), representing positivity for lipofuscin. (C) Cells from lung adenomas positive for both, SA-β-gal activity and lipofuscin. (D) Fluorescence microscopy (at 450-490 nm) verifying lipofuscin presence. (E) Normal mouse lung tissue negative for SA-β-gal activity and lipofuscin. P: Parenchyma, AD: Adenoma. Scale bars: A-C, 200 μm; D, 25 μm; E, 50 μm. Insets: Cells at higher magnification.

	[image: Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in senescent cells detected in cryo-preserved material from benign prostatic hyperplasia (BPH)]

	Figure 6. Lipofuscin accumulates and co-localizes with Senescence-Associated beta-galactosidase (SA-β-gal) in senescent cells detected in cryo-preserved material from benign prostatic hyperplasia (BPH). Frozen material from patients with BPH in enlarged prostates (prostate weight greater than 55gr) was thin-sectioned (5 μm). The sections were immediately double stained for SA-β-gal activity (turquoise color) and Nuclear Fast Red (NFR) as counterstain (A) and double stained with SBB and NFR (B). Areas with characteristic BPH pathology showed SA-β-gal activity and lipofuscin positivity (C). Normal prostate regions adjacent to BPH, were found negative for SA-β-gal activity and lipofuscin (D). Scale bars: A-C, 100 μm; D, 50 μm. Insets: Cells at higher magnification.

	Having verified specific staining of senescent cells by SBB we then asked whether this approach could be also applicable in archival tissues. Thus, SBB stain was performed in FFPE tissue samples prepared from the above in vivo settings. As demonstrated in Fig.7, SBB staining clearly demonstrated lipofuscin in the lung adenomas (Fig.7). Strikingly, adjacent adenocarcinomas that spontaneously developed in these mice [5] were negative (Fig. 7). This finding supports the reliability of SBB as a method for staining senescent cells in FFPE (Fig. 7). Also, it is in line with the finding of Collado et al., that spontaneously developing adenocarninomas in this model bypass the senescence anti-tumor barrier [5]. In addition, as representatively shown in Fig.8, SBB specifically stained blue-black lipofuscin granules in the FFPE material from BPH (see Fig.6) that were characterized as SA-β-gal positive. To further validate SA-β-gal and SBB staining tissue co-localization, we applied triple staining for SA-β-gal, SBB and NFR on BPH samples.
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	Figure 7. Sudan Black B (SBB) staining demonstrates lipofuscin accumulation in lung adenomas (AD) and absence in adenocarcinomas (AdCa), in formalin-fixed paraffin-embedded (FFPE) lung sections from mice conditionally expressing K-rasV12. (A) Haematoxylin and Eosin staining demonstrates a lung adeoma (AD) and an adenocarcinoma (AdCa) on the same FFPE section (B) Histological features of the adenoma and the adenocarcinoma shown in A section. (C) Characteristic perinuclear deposition of blue black granules in adenoma cells stained with Sudan Black B (SBB), representing positivity for lipofuscin, while adenocarcinoma cells are negative for SBB. (D) Fluorescence microscopy (at 450-490 nm) verifying lipofuscin presence in the adenoma, and absence in the adenocarcinoma. Scale bars: A, 600 μm; B-D, 100 μm. Inset: Cells at higher magnification.
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	Figure 8. Accumulation of lipofuscin in formalin-fixed paraffin-embedded (FFPE) tissues from benign prostatic hyperplasia (BPH) that corresponds to senescent areas as depicted by Senescence-Associated beta-galactosidase (SA-β-gal) in cryo-preserved material. FFPE sections from patients with BPH in enlarged prostates (prostate weight greater than 55gr) demonstrate accumulation of lipofuscin. Sections were deparaffinized and double stained with SBB (dark blue-black granules) and NFR as counterstain (A). Lipofuscin's presence was verified with fluorescence microscopy (B). Immunostaining for Ki-67 shows no matching with lipofuscin accumulation (C). Normal prostate regions adjacent to BPH, were negative for lipofuscin (D). Scale bars: BPH, 100 μm; Normal Prostate, 50 μm. Insets: Cells at higher magnification.

	Specifically, the frozen samples were fixed in formaldehyde for 2h, stained with SA-β-gal; routinely processed for FFPE as previously described [6], sectioned and then stained with SBB (Fig.9). Although,SA-β-gal activity was detected mostly in the periphery of the sections, leaving the core of the tissue unstained (likely due to slow penetration of the SA-β-gal stain into the tissue) a clear co-localization of SA-β-gal activity and SBB staining was noted close to the tissue periphery marked by pathological features of BPH. Interestingly, SBB foci were also observed in the core of the tissue (Fig. 9).
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	Figure 9. Co-localization of Senescence-Associated beta-galactosidase (SA-β-gal) activity and lipofuscin depiction in fresh-frozen tissue sample of benign prostatic hyperplasia (BPH) pretreated with SA-β-gal and subsequently embedded in paraffin. Fresh samples with BPH were snap frozen, fixed in 4% formaldehyde, washed with buffer, incubated in SA-β-gal solution (turquoise color), subsequently fixed with formal-dehyde, and then embedded in paraffin, as previously shown (Michaloglou et al 2005). Sections where then double stained with Sudan Black B (SBB) (dark blue-black granules) and Nuclear Fast Red (NFR) as counterstain. Areas with the characteristic pathology of BPH showed SA-β-gal activity and lipofuscin positivity. Note the weak intensity of the Sa-β-gal staining.

	It has been reported that false positive SA-β-gal staining may be detected in confluent cultures of quiescent cells [29, 30]. To investigate whether lipofuscin may be present in confluent cultures, we performed the SA-β-gal assay and SBB stain in confluent DLF cultures. We observed that as soon as the cells reached confluence they showed SA-β-gal activity while, in contrast, such cultures showed only negligible lipofuscin staining (Fig.10A). Extending the two assays for 72 hours we observed that all the cells clearly demonstrated SA-β- gal activity, whereas cells containing lipofuscin granules were fewer (Fig. 10B). Furthermore, the enzymatic activity of galactosidase [31] may produce positive results of SA-β-gal assay in non-senescent cells, when incubated for prolonged time. We incubated sub-confluent cultures of young DLFs in SA-β-gal for 72 hours (prolonged incubation) and then stained immediately with SBB. In these cells we observed SA-β -gal activity while there was no detectable SBB staining for lipofuscin (Fig. 10C).
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	Figure 10. Lipofuscin staining and Senescence-Associated beta-galactosidase (SA-β-gal) activity in primary human diploid lung fibroblasts (DLF). Triple staining of early passage (6th) DLF cells with Sudan Black B (SBB) (dark blue-black granules), SA-β-gal (turquoise color) and Nuclear Fast Red (NFR), as counterstain. (A) Cells that had just reached 100% confluence showed SA-β-gal activity with negligible lipofuscin (arrows). (B) In the same assay 72 hours later, some cells demonstrated SA-β-gal staining (arrowheads) without lipofuscin, and there were also cells with concurrent SA-β-gal and SBB staining (arrows). (C) In sub-confluent DLF cells, prolonged SA-β-gal incubation (72 hours) followed by immediate SBB staining, demonstrated SA-β-gal activity (inset) without lipofuscin appearance.

	Discussion

	In this study, we examined whether lipofuscin, “a hallmark of aging”, [15] is also a cellular senescence biomarker and especially whether it is a marker of SIPS. Our working hypothesis was based on the notion that senescent cells accumulate in aged tissues [2]. We argued that the presence of lipofuscin in senescent cells could complement SA-β-gal by providing and additional marker of cellular senescence. To this end a series of experiments were designed in which various cellular systems, based on normal and cancer cells, were driven to either RS or SIPS. In line with our hypothesis all cells that displayed the senescence phenotype under either RS, or SIPS scenarios demonstrated co-localization of SA-β-gal activity and SBB-detected lipofuscin granules, both in vitro and in vivo, (Fig. 1D, 2D, 3D, 4D, Fig. 1E, 2E, 3E, 4E and Fig. 5C, 6C) whereas tissues negative for SA-β-gal activity were negative for lipofuscin, as well (Fig. 5E, 6D).

	Lipofuscin is a non degradable aggregate of oxidized proteins, lipids and metals which accumulates inside the lysosomes of cells that do not replicate [16]. Such accumulation possibly reflects the inability of nonproliferating cells to dispose of lipofuscin by cellular division, a process that naturally results in dilution of lipofuscin [32]. Lipofuscin accumulation in aged tissues and age- related pathologies is considered a progressive phenomenon, probably as a consequence of the decline of the cellular clearance systems of misfolded (lipo)proteins and possibly other ‘aberrant’ metabolites [16, 33, 34]. We observed the lipofuscin granules in cells shortly after they became senescent. This fact implies that lipofuscin formation is possibly related to the senescent state, rather than just arandomtime-coincident event. Our findings reinforce the observation that senescent cells are hyper-metabolic and full of lipids in the cytoplasm. [35]. As no specific antibody for lipofuscin exists, we have used the SBB histochemical stain to demonstrate the presence of lipofuscin [16]. The dye is diluted in ethanol and due to its lipophilic nature, when in contact with lipids; it assembles on the lipid surface, as it is more soluble in lipids than in ethanol [26]. Accordingly, SBB stains the lipid component of lipofuscin [26]. Several methods were reported to detect lipofuscin, including fluorescence microscopy due to the natural auto-fluorescence of lipofuscin [36], as well as histochemical dyes like SBB, Berlin Blue, Nile Blue, Ziehl-Neelsen and Periodic acid Schiff [37]. As SBB is shown to specifically mask lipofuscin's fluorescence, it was considered the most reliable histochemichal stain to apply [19, 26, 27, 38]. SBB is suitable for use both in frozen and FFPE material [27]. We also verified that SBB staining for lipofuscin may depict senescent cells in FFPE sections from precancerous lesions already shown to contain senescent cells [5, 7, 28] (Fig. 7, 8A-C and Fig.9), while it is negative in the adjacent normal tissue (Fig. 8D) and the related carcinomas (Fig. 7) that have over-come the senescence anti-tumor barrier [5]. These characteristics support the candidacy of SBB for a highly desirable tool to study senescence in archival material.

	There is a broadrange of potential senescence markers whose reliability, however,varies [39, 40]. None of the candidate markers proposed to date, however, is considered entirelyspecificfor cellular senescence, especially for in vivo applications[3]. The most commonly used senescence biomarker is SA-β-gal activity [14]. On the other hand, even the SA-β-gal assay apparently produces false positive results, under certain culture conditions such as confluence and serum starvation [29, 30>]. Also, cells that do not express the galactosidase gene, show no SA-β-gal activity, but fully execute the senescence program [31]. SA-β-gal, can only be used in fresh-frozen tissue as it is based on the enzymatic activity of galactosidase [14]. This limitation prevents to use SA-β-gal for studies of senescence in FFPE- archival material [1]. Furthermore, if cells or tissues are left in SA-β-gal solution for a prolonged time, all cells eventually will acquire the characteristic turquoise stain, due to their normal enzymatic galactosidase activity (Fig. 10C) [31]. To perform the technique a control sample is always required and the process is usually stopped when the sample under investigation starts to stain. As different tissues and cells require different times to stain and the desired stain is selected subjectively by the observer, the density and intensity of the turquoise color considered as positive varies between studies. On the other hand, SBB is a fast dye and it takes only few minutes to stain lipofuscin in tissues and cells, while the results are homogeneous and reproducible. This technique for identifying senescent cells is therefore easier, more rapid, likely more reproducible, and especially more suited for a wider spectrum of applications in diagnostic pathology laboratories. Moreover, SBB is a technique employable in frozen tissue [27], so it is also ideal for use in parallel with SA-β-gal as an additional biomarker of the senescent state. Of note, like all the other senescence biomarkers, lipofuscin is not 100% specific for senescence as it aggregates in degenerative conditions such as macular degeneration [16]. As shown (Fig. 10A, 10B) in confluent cultures, cells containing lipofuscin may be detected. However, in contrast to SA-β-gal activity which is immediately demonstrated in confluence and is present in all the cells (Fig. 10A), lipofuscin granules appear later and to a significantly lesser extent (Fig. 10B).

	The majority of pathologies associated with lipofuscin are age-related diseases [16]. The role of cellular senescence in age-related pathologies and cancer, conditions that are both considered integral components of “aging”, is a widelygrowing fieldof biomedical research [39, 40]. Future studies will focus on the role of cellular senescence in cancer, especially considering the increasing evidence thatsenescence is one of major outcomes and a determinant of treatment response in oncology, broadly analogous to significance of apoptosis [13, 41]. Furthermore, there is evidence that presence of senescent cells in certain malignant tumors may be a sign of better prognosis [42]. There is little doubt that a convenient bio-marker applicable in archival tissue materialwould greatly facilitate research on cellularsenescence in cancer. Thedetectionoflipofuscin with SBB could be applied in studies that evaluate the effects of chemotherapy and otherantineoplastic treatments.

	Taken together, our present study showed that lipofuscin can provide a senescence biomarker comparable to the SA-β-gal activity. Detection of lipofuscin with SBB stain can be applied as a stand-alone or auxiliary to SA-β-gal technique. Furthermore, SBB may visualize senescent cells in FFPE tissues, the most common form of archival clinical material, thereby extending the applicability of currently available candidate senescence biomarkers to a much wider selection of research topics related to diverse diseases and aging.

	Methods

	Cells and inducible cellular systems

	Primary human diploid lung fibroblast cultures (DLFs) were used as previously described [20]. Briefly, cells were grown in DMEM supplemented with 10% FCS (Gibco, AntiSel, Greece), 2 mmol/L L-Glutamine (Gibco, AntiSel, Greece), and 100 μg/mL penicillin and streptomycin (Gibco, AntiSel, Greece), respectively, at 37°C and 5% CO2. The cells were serially sub-cultured at 1:2 split ratio until replicative senescence (42 passages). Alternatively, early passage fibroblasts (7 passages) were repeatedly exposed, twice a day, to sub-lethal doses (4 Gy) of γ-radiation up to a cumulative dose of approx. 50 Gy (12×4Gy), in a 60Co gamma source (Gamma Chamber 4000A, Isotope Group, Bhadha Atomic Research Company, Trombay, Bombay, India) at a rate of 8 Gy/min. The cells were subcultured and after additional two weeks, fixed and analyzed. The regulatable osteosarcoma cell models Saos-2 p21 Tet-On, Saos-2 p53 Tet-On and U2OS-E2F1-ER were cultured as previously described [25, 43]. Briefly, these cell lines were maintained under the same culture conditions as DLFs, except for the use of FBS tetracycline-free medium (Clontech, Lab Supplies, Greece) on Saos2-p21 Tet-On and Saos2-p53 Tet-On systems. The U2OS-E2F1-ER system induction was accomplished with 300nM 4-OH-Tamoxifen, for 10 days. Saos-2 p21 Tet-On and Saos-2 p53 Tet-On systems were induced with 5μg/ml doxycyclin for 8 days before fixation. All cell lines were fixed in 4% parafolmadehyde (5 min, room temperature) then washed with sterile PBS and kept at 4°C until staining.

	Human samples and animal models

	Tissue samples from lung adenomas and adenocarcinomas from a mouse model expressing conditionally K-rasV12in the lung were analyzed [5]. Normal mouse lung tissue was obtained from the Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientic Research ‘Demokritos. Subsequently, surgically removed material from patients with benign prostate hyperplasia was obtained (with consent of patients according to the National Kapodistrian University of Athens ethical committee guidelines). From each sample, material was partitioned and either stored at −80°C [14] or routinely formalin-fixed and paraffin-embedded (FFPE).

	SA-β-galactosidase Assay

	The activity of SA-β-gal in cell cultures and frozen tissues was detected according to Debacq-Chainiaux et al.[14]. Cells with cytoplasmic staining were scored as positive. Fresh-frozen, formaldehyde-fixed SA-β-gal pre-incubated tissues were stained as described elsewhere[6].

	Lipofuscin staining protocol: Sudan Black B (SBB) staining

	Combining the protocols of Gatenby et al. [17], and Rasmussen, [18] for SBB staining, we achieved optimal lipofuscin visualization in cell cultures and tissues with the following methodology:

	
		Preparation of SBB solution: 0.7gr of SBB (BDH, Vizas, Athens, Greece) was dissolved in 70% ethanol, covered with parafilm and thoroughly stirred overnight at room temperature. Filtered through filter paper and then filtered again through frittered glass filter of medium porosity with suction. Throughout the process, it was important to avoid ethanol evaporation,which results in precipitation of the stain, so the solution was storedin an airtightcontainer.

		Staining Procedure: OCT-Frozen-sections mounted onto superfrost slides were fixed in 1% (wt/vol) formaldehyde/PBS for 1 min at room temperature and then washed three times (approx.1 min) at room temperature, with PBS. Sections were then incubated for 5 min in 50% ethanol and then for another 5 min into 70% ethanol. Coverslips with fixed cells were incubated for 2 min in 70% ethanol. Tissue samples were dewaxed with xylene and dehydrated until 70% ethanol. In order to avoid precipitation of SBB on cells or tissues the following two steps are crucial: 1) a drop from freshly prepared SBB was dropped on a clean slide. The coverslip with the cells or the dehydrated tissue on a slide was placed facing down on the drop of SBB on the slide. The staining was observed under the microscope. The desirable outcome with no precipitation was accomplished by 2-8 minutes. 2) The coverslip or the slide, were carefully lifted and the SBB on the edges of the coverslip or the tissue-slide was wiped out manually from the back and along the edges of the coverslip or the slide with the help of a soft paper. The cells or the tissues were then embedded into 50% ethanol, transferred and washed in distilled water, counterstained with 0.1% Nuclear Fast Red (NFR) (Sigma, BioLine, Athens Greece) for 10 min., and mounted into 40% Glycerol/TBS mounting medium. Lipofuscin staining was considered positive when perinuclear and cytoplasmic aggregates of blue-black granules were evident inside the cells.



	Immunofluorescence

	For indirect immunofluorescence analysis, cells were fixed with 4% paraformaldehyde in PBS and subsequently incubated with the primary antibody anti-E2F1 (1:100) (KH-95, Santa Cruz, Bioanalytica, Athens, Greece), as previously described [25].

	Immunoblotting analysis

	Total protein extraction from cells and SDS-polyacrylamide gel electrophoresis was performed as previously described [25]. The antibodies used were: anti-p21 (1:500) (F-5, Santa Cruz, Bioanalytica, Athens, Greece) and anti-p53 (1:500) (DO-1, Santa Cruz, Bioanalytica, Athens, Greece).

	Auto-fluorescence Detection of Lipofuscin

	The FFPE tissue sections were deparaffinized, hydrated and mounted into 40% glycerol/TBS mounting medium. The cells after fixation were also mounted into the same mounting medium. Lipofuscin auto-fluorescence was then evidenced by excitation at 450-490nm, using a dichromatic mirror at 510nm and a long-pass filter at 515nm [26]. We used the Leica DMRAZ microscope equipped with the Leica DFC350FX camera. This analysis was performed in cultured young and senescent cells as well as in all tissue sections. Lipofuscin auto-fluorescence was quenched with 0.7% SBB in 70% ethanol [38].
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	Abstract

	Although antioxidants have been repeatedly tested in animal models and clinical studies, there is no evidence that antioxidants reduce already developed age-related decline. Recently we demonstrated that mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) delayed some manifestations of aging. Here we compared effects of SkQ1 and N-acetyl-L-cysteine (NAC) on age-dependent decline in blood levels of leukocytes, growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, dehydroepiandrosterone (DHEA) in Wistar and senescence-accelerated OXYS rats. When started late in life, supplementation with SkQ1 not only prevented age-related decline but also significantly reversed it. With NAC, all the observed effects were of the lower magnitude compared with SkQ1 (in spite of that dose of NAC was 16000 times higher). We suggest that supplementation with low doses of SkQ1 is a promising intervention to achieve a healthy ageing.

	Introduction

	Aging is commonly defined as progressive deleterious alterations that lead to increased risk of disease and death with advancing age [1-3]. Several potential therapeutic approaches are now available to slow down the age-related functional decline of the organism [4-17] including treatment with antioxidants [1, 18, 19]. Indeed, generation of reactive oxygen species (ROS) by mitochondria is considered as one of mechanisms of aging [20-28]. However, current antioxidants are not selective to mitochondria and that might hamper their effectiveness [29]. Over the course of seven years we investigated retardation of aging with a mitochondria-targeted antioxidant SkQ1 [10-(6'-plastoquinonyl) decyltriphenylphosphonium]. SkQ1 is an antioxidant selectively targeted to mitochondria that protects mitochondria from oxidative damage and which has been shown to decrease mitochondrial damage in animal models of oxidative stress [29, 30]. We have shown that SkQ1 increased the median lifespan of organisms and also delayed, arrested, and in some cases even reversed development of many age-related pathological traits [29-34].

	A complex change of the immune system occurs with aging. Immuno-senescence is defined as decreased cellular reactivity, and imbalance between inflammatory and anti-inflammatory networks, which results in low-grade, chronic, pro-inflammatory condition also known as “inflammaging” [35-39]. Aging affects all immune cells, and it leads to high susceptibility to infections and increased mortality observed in the elderly. Therefore age-related changes in immune cells could serve as a marker of health, biological age and longevity [40].

	Here we evaluated the effect of the mitochondria-targeted antioxidant SkQ1 on markers of aging in the old OXYS rats, a unique animal model of accelerated senescence and age-related diseases, as well as normal Wistar rats. OXYS rats spontaneously develop several pathological phenotypes similar to human geriatric disorders including cataract, retinopathy, osteoporosis, high blood pressure and behavioral alterations [41-50]. Most of these manifestations of accelerated aging develop in OXYS rats between 1 and 3 months of life. Recently we showed that SkQ1 at nanomolar concentrations is capable not only to prevent decline of the immune system and development of cataract and retinopathy but also can reverse already developed pathological changes in the lens and retina of OXYS rats as well as some age-related alterations in behavior [29, 51-53].

	For comparison we used N-acetyl-L-cysteine (NAC) as a non-targeted antioxidant. NAC has been shown to prevent age-related cognitive defects and oxidative decline of mitochondrial functions in the brain [54, 55].

	Results

	Body weight

	The body weight of 19-month-old rats was measured before the treatment with antioxidants. Rats were randomly assigned to control and experimental groups. OXYS rats are characterized by lower body weight in comparison with Wistar rats. Accordingly, before treatment at the age of 19 months the body weight was dependent only on the genotype (F1.82 = 472.7, p < 0.000) and was lower in OXYS rats (Table 1). At the start of treatment with antioxidants experimental groups did not differ in weight (p = 0.34 for Wistar, p = 0.52 for OXYS). At the end of the 4-month treatment with NAC and SkQ1 the body weight remained lower in OXYS rats (F1.82 = 245.6, p < 0.000) and it was not affected by the antioxidants (F2.82 = 1.6, p = 0.2). A paired dependent comparison showed that body weight of OXYS rats treated with NAC at the age of 23 months was even lower than their weight at the age of 19 months (p < 0.015). OXYS rats treated with SkQ1 showed tendency to lose weight, whereas the body weight of control OXYS rats was not changed by the age of 23 months.

	Table 1. Body weight (g) of control and SkQ1-or NAC-treated Wistar and OXYS rats at the age of 19 and 23 months

	
		
				Strain

				Wistar

				OXYS

		

		
				Treatment

				0

				SkQ1

				NAC

				0

				SkQ1

				NAC

		

		
				19 months

				612±18*

				630±18*

				637±17*

				404±9*

				424±14*

				411±6*

		

		
				23 months

				560±27*

				642±20*

				604±27*

				393±8*

				390±8*

				385±9^*

		

		
				* statistically significant differences between the strains of the same age;

		

		
				^ statistically significant differences between 19- and 23-month-old rats (paired-dependent comparisons of the same animals).

		

	

	The white blood cell analyses

	In agreement with earlier findings [56], we observed an age-dependent decrease in the number of lymphocytes and an increase in neutrophils (Tabl. 2). The counts of neutrophils in the peripheral blood of Wistar rats at the age of 19 months were higher than those in 3 months old rats (p < 0.05, comparison of group mean values); and number of neutrophils in 23 months old animals was higher than that in 19 months old rats (p < 0.009, paired dependent comparisons of the same animals). At the same time the counts of lymphocytes in the blood of Wistar rats decreased (p < 0.009 for 19 months old and p < 0.04 for 23 months old). In OXYS rats, these parameters also varied with age, but the increase in the counts of neutrophils and decrease in lymphocytes were statistically significant only at the age of 19 months compared with the 3-month-old animals (p < 0.05). Treatment of Wistar rats with NAC almost completely prevented the drop in lymphocytes/neutrophils ratio, while 4 months treatment with SkQ1 not only prevented its decrease, but actually increased this ratio almost to the level of young rats. In OXYS rats, neither aging from 19 to 23 months nor antioxidants significantly affected the white blood cell counts.

	Table 2. White blood cell counts in Wistar and OXYS rats at the age of 3, 19 and 23 months. Effects of 4 months treatment with SkQ1 or NAC. The results are given as % of the total number of white blood cells

	
		
				Strain

				Age, month

				Treatment

				Lymphocytes

				Neutrophils

				Eosinophils

				Monocytes

				Lymphocytes/Neutro phils ratio

		

		
				Wistar

				3

				0

				74.1±5.8

				20.4±0.21

				2.13±0.25

				4.10±0.25

				3.63±0.41

		

		
				19

				0

				63.0±1.32^

				29.4±1.27^

				3.36±0.29^

				3.43±0.20

				2.46±0.14^

		

		
				23

				0

				54.5±4.42^

				38.6±4.47^

				4.50±1.26

				2.38±0.34^

				1.77±0.29^

		

		
				SkQ1

				66.9±3.19#

				25.9±2.92#

				4.00±0.83

				3.22±0.28

				2.92±0.39#

		

		
				NAC

				62.4±3.72

				31.7±3.79

				2.93±0.66

				3.00±0.33

				2.26±0.34

		

		
				OXYS

				3

				0

				73.1±6.1

				19.36±1.6

				2.22±0.21

				5.27±0.52

				3.80±0.35

		

		
				19

				0

				66.0±0.91^

				28.0±0.82^

				2.77±0.20

				3.0±0.21^

				2.54±0.10^

		

		
				23

				0

				64.3±1.78*

				30.3±1.91

				2.53±0.45*

				2.87±0.31

				2.28±0.19

		

		
				SkQ1

				57.1±3.17

				38.4±3.05#

				1.83±0.53#

				2.65±0.31

				1.76±0.22

		

		
				NAC

				58.3±2.14

				36.6±2.23

				2.23±0.28

				2.86±0.18

				1.77±0.15

		

		
				* statistically significant difference between the strains of the same age;

		

		
				# significant effect of the drug within the strain;

		

		
				^ significant age-related differences from the previous age within the strain.

		

	

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	Serum GH levels

	The level of GH naturally was decreased with age in rats of both strains albeit more profoundly in OXYS rats than in Wistar rats (p < 0.0001 for age of 3 months, p < 0.009 for 19 months and p < 0.008 for 23 months). Before the treatment with antioxidants GH levels depended only on the genotype (F1.42 = 60.96, p < 0.000) and at the age of 19 months OXYS rats had lower levels of GH (Table 3). At the start of supplementation with antioxidants the experimental groups did not differ in the levels of GH (p = 0.49 for Wistar, p = 0.52 for OXYS).

	Table 3. Levels of GH, IGF-1, DHEA-S and testosterone (ng/ml) in serum of intact Wistar and OXYS rats at the age of 3, 19 and 23 months and of rats treated with SkQ1 or NAC from the age of 19 months to 23 months

	
		
				Strain

				Age, month

				Treatment

				GH

				IGF-1

				Testosterone

				DHEA

		

		
				Wistar

				3

				0

				8.14±0.2

				535±62

				1.42±0.3

				-

		

		
				19

				0

				5.28±0.1+

				483±7

				0.61±0.04+

				0.66±0.01

		

		
				23

				0

				4.98±0.2+

				448±12+

				0.60±0.07

				0.63±0.02+

		

		
				SkQ1

				5.50±0.1 #^

				500 ± 9#

				0.61±0.05

				0.66±0.01

		

		
				NAC

				5.37±0.2^

				486±10#

				0.61±0.03

				0.66±0.03

		

		
				OXYS

				3

				0

				6.24±0.3*

				498±64

				1.99±0.31

				-

		

		
				19

				0

				4.57±0.1 *+

				444±7*+

				0.64±0.06+

				0.58±0.01*

		

		
				23

				0

				4.27±0.1*+

				399±9*+

				0.56±0.02

				0.55±0.03*+

		

		
				SkQ1

				4.80±0.1#^

				499±9 #^

				0.58±0.02

				0.60±0.02^

		

		
				NAC

				4.58±0.08^

				449±13#

				0.57±0.02

				0.59±0.02

		

		
				* statistically-significant difference between the strains of the same age;

		

		
				# significant effect of the drug within the strain;

		

		
				+ significant age-related differences from the previous age within the strain,

		

		
				^ statistically-significant difference between the levels before and after treatment with SkQ1 or NAC (paired-dependent comparisons of the same animals).

		

	

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	After 4-month of treatment with NAC or SkQ1 GH levels remained lower in OXYS rats (F1.42 = 49.6, p < 0.000) and were affected by antioxidants (F2.42 = 8.8, p < 0.0008). In both Wistar and OXYS rats treated with SkQ1, GH levels were significantly higher than in control groups of the corresponding strain (p < 0.004 and p <0.02, respectively). In Wistar rats treated with NAC - no difference was found. Yet a paired dependent comparison showed that GH levels in Wistar rats treated with SkQ1 and NAC were higher at the age of 23 months than at the age of 19 months (p < 0.009 and p < 0.046, respectively). A paired dependent comparison showed a small but significant increase in GH levels from the age of 19 months to 23 months in OXYS rats treated with SkQ1 (p < 0.000) or NAC (p < 0.046). In control OXYS rats GH levels decreased significantly (p < 0.02) by the age of 23 months. In addition, SkQ1 treated OXYS rats and control Wistar rats of the same age (23 months) did not differ in GH levels.

	Serum IGF-I levels

	At the age of 3 months, serum IGF-1 levels were maximal in Wistar and OXYS rats and there was no difference in IGF-1 levels between the strains. IGF-1 levels decreased in rats with age, more profoundly in OXYS rats than in Wistar rats (p < 0.002 for the age of 19 months and p < 0.048 for 23 months). Before treatment with antioxidants IGF-1 levels were dependent on the genotype (F1.42 = 12.3, p < 0.002) and at the age of 19 months IGF-1 was lower in OXYS rats than in Wistar rats (Table 3). At the start of treatment with antioxidants experimental groups did not differ in the levels of IGF-1 (p = 0.87 for Wistar and p = 0.81 for OXYS rats).

	After 4 months treatment with antioxidants IGF-1 levels were dependent on the genotype, (F1.42 = 8.1, p < 0.008) and were affected by antioxidants (F2.42 = 19.4, p < 0.00). In Wistar rats treated with either SkQ1 or NAC, IGF-1 levels were significantly higher (p < 0.0002 and p < 0.014, respectively) than in the control group. The paired dependent comparison showed that IGF-1 levels in 23-month-old Wistar rats treated with either NAC or SkQ1 were even higher than they have been at the age of 19 months (p = 0.032), while in the control rats IGF-1 was significantly lower (p < 0.001).

	From the age of 19 to 23 months IGF-1 levels in control group of OXYS rats also decreased significantly (p < 0.001). In OXYS rats treated with either SkQ1 or NAC, IGF-1 levels were significantly higher than in the control group (p < 0.013 and p < 0.031, respectively). The paired dependent comparison showed that in rats treated with NAC, at the age of 23 months IGF-1 levels remained similar to the 19-month-old animals, whereas, in the rats treated with SkQ1 its level increased significantly (p < 0.000). In addition, in 23-month-old OXYS rats treated with NAC, IGF-1 levels were similar to those in Wistar control rats of the same age, but in OXYS rats treated with SkQ1, IGF-1 levels were similar to IGF-1 levels of young Wistar rats.

	Serum testosterone and DHEA levels

	ANOVA analyses showed that the level of testosterone in Wistar and OXYS rats was maximal at the age of 3 months and decreased by the age of 19 months in both strains (F2.62 = 74.7, p < 0.00) and remained unchanged by the age of 23 months. Treatment with NAC and SkQ1 had no effect on the testosterone level (Table 3).

	We did not measure DHEA in three-month old animals. At the age of 19 months, DHEA level was slightly lower in OXYS rats (F1.42= 19.2, p < 0.0001). In 23 months old Wistar and OXYS rats, level of DHEA differs only slightly from that in 19 months old animals (Table 3).

	Discussion

	Our results indicate that when started late in life, treatment with SkQ1 not only prevented age-related decline, but also partially reversed it. Effects of NAC were of the lower magnitude compared to SkQ1, despite the higher dose of NAC used.

	One reason for body weight loss in old age is sarcopenia - a gradual decline in muscle mass. After 4 months treatment with antioxidants the body weight of OXYS and Wistar rats decreased only slightly. In SkQ1 treated group weight was very similar to weight of control rats in both rat strains. These findings are consistent with unpublished data of L.E. Bakeeva and V.B. Saprunova, who found that SkQ1 reduced the age-related decline in muscle mass in OXYS and Wistar rats. Another reason for body weight reduction in old age is osteoporosis, which results in increased risk of fractures. Feeding SkQ1 prevented loss of mineral content associated with senile osteoporosis in OXYS rats [34]. In our study the paired dependent comparison showed that body weight decreased significantly (p < 0.015) only in OXYS rats treated with NAC.

	White blood cells (WBC) counts could serve as a marker of health, biological age and longevity. In humans, lymphocytes increase early in life until age of 16–21 years [56]. Some studies indicate that number of lymphocytes decreases with age [57-59]. In line with these findings, we observed that the lymphocyte/neutrophil ratio was high in the 3-month-old Wistar and OXYS rats and decreased with age: the counts of lymphocytes were decreased and neutrophils were increased. Lymphocytes are important effector cells and therefore their activation is essential for immune responses [57]. Diminished lymphocyte production and function are major contributors to disease in elderly [56]. 4 months treatment with NAC almost completely prevented the decrease in ratio between lymphocytes and neutrophils in 23-month-old Wistar rats compared with 19-month-old ones. SkQ1 increased the lymphocyte/neutrophil ratio, and thereby partially reversed decline of this parameter, which was observed at the age of 19 months. Our present results in Wistar rats are in line with the previous reports that NAC [60, 61] and SkQ1 [32,58] prevent the age-linked decrease in lymphocyte level in mice. However, both antioxidants did not affect the blood lymphocyte/neutrophil ratio in OXYS rats. The age-related decrease in lymphocytes is a consequence of involution of thymus, the major organ of lymphocyte maturation. The OXYS rats exhibit accelerated involution of the thymus and SkQ1 reduces age-related thymic involution in both OXYS and normal Wistar rats [52]. It is possible that lack of SkQ1 and NAC effects on the WBC count in old OXYS rats is associated with impairment in bone marrow hematopoiesis. We have previously reported the age-associated changes in the functional status of hematopoietic stem cells in OXYS rats [62]. It can be assumed that in OXYS rats the lymphocyte/neutrophil ratio was already stabilized at low level in the 19 month-old rats so that antioxidants could not have a favorable effect. Antioxidants had no effect on the levels of eosinophils and monocytes in both rat strains.

	Circulating GH levels are at the highest during the neonatal period; they decrease during childhood, peak again during puberty and fall dramatically in the elderly [63]. A reduction in GH level in older humans and rodents correlates with a decline in serum levels of an anabolic mediator IGF-1 [64]. The present study confirmed an age-dependent GH and IGF-1 decrease in rats of both strains. In addition, we showed that the serum GH level in all studied groups of OXYS rats was lower than in age-matched Wistar rats. Interstrain differences were highest in the three-month old animals (23%), while at the age of 19 and 23 months difference was 13% and 14%, respectively. There were no interstrain differences in the blood levels of IGF-1 in the 3-month-old animals but at the ages of 19 and 23 months they were slightly (but statistically significant) reduced in OXYS rats (by 9 and 11%, respectively).

	Our study also showed for the first time that NAC supplementation from the age 19 to 23 months fully prevented the GH and IGF-I decline in both Wistar and OXYS rats. SkQ1 not only stopped the decline in hormone levels between the ages of 19 and 23 months, but it also increased the levels of GH and IGF-I above the levels of those found in 19 month-old animals (Table 3). It is well known that GH/IGF-I plays an important role in brain aging [65, 66]. Age-related reduction in the activities of somatotropic axis may influence brain function in the elderly [67]. Recently we have shown that SkQ1 treatment of the middle-aged (12 month) Wistar and OXYS rats had beneficial effects on the locomotor and exploratory activity. SkQ1 also decreased anxiety compared to age-matched controls as well as significantly improved visual ability of the OXYS rats, which suffered from retinopathy and cataract [49]. In the present study, we observed a positive effect of SkQ1 and NAC on the behavior of rats of both strains (data are not shown). In the last series of experiments, we studied effect of SkQ1 on the levels of growth hormone and IGF-1 in 3-month-old rats (data are not shown). We found that SkQ1 caused small (about 25%) but statistically valid increase in the blood hormone level. In addition, SkQ1 prevented the development of retinopathy and cataract and had beneficial effects on behavior, learning ability and memory of OXYS rats. We suggest that the recovery of GH - IGF-I in old age to the levels of those in young age can have a positive impact on the function of the aging brain and the immune system.

	At the age between 3 and 19 months, the testosterone levels fell and then remained unchanged between 19 and 23 months in rats of both strains. It was not surprising that there was no interstrain difference in the testosterone level even in old animals. As was previously shown in our group, OXYS males demonstrate an early decrease in sexual motivation; however a decrease in hormonal component of sexual behavior was not detected in aged OXYS males [68]. Recently we showed that SkQ1 is effective not only in preventing but also in reducing already developed age-related decline in male sexual behavior [69]. In the present study, we did not evaluate the sexual behavior, and neither SkQ1 nor NAC treatments affected testosterone levels in period between 19 and 23 months (Table 3). Noteworthy, NAC partially inhibits the mTOR (Target of Rapamycin) pathway [70]. Given the involvement of mTOR in cellular and organismal aging as well as age-related diseases [71-78], slight inhibition of mTOR may contribute to the therapeutic effects of this non-selective antioxidant.

	DHEA and its sulfate-bound form (DHEAS) are important precursors of sex steroid hormones. Structure of DHEA is similar to testosterone and levels of both hormones reach their maximal levels in puberty and decrease dramatically with age [79]. Given its multiple metabolic effects, this decline in DHEA levels has been thought to play a role in the aging process [80]. In this study, we can assume that the DHEA levels are maximal in 3-month-old Wistar and OXYS rats. At the age between 19 and 23 months, DHEA levels decreased and SkQ1 increased DHEA only slightly (by 5%).

	Deficiencies in multiple hormones are a biomarker of health status in older persons [79].

	Here we conclude that SkQ1 not only prevented age-associated hormonal alterations but partially reversed them. These results suggest that supplementation with low doses of SkQ1, even in chronologically and biologically aged subjects seem to be a promising strategy to maintain health and retard the aging process.

	Materials and Methods

	Animals and diet

	Male senescence-accelerated OXYS and age-matched male Wistar rats were obtained from the Breeding Experimental Animal Laboratory of the Institute of Cytology and Genetics (ICG), Siberian Division of the Russian Academy of Sciences (Novosibirsk, Russia). All the experiments on rats were carried out according to Animal Care Regulations of ICG Institute of Cytology and Genetics, Novosibirsk. The OXYS rat strain was established based on Wistar rat strain at the Institute of Cytology and Genetics as described earlier [51, 52] and registered in the Rat Genome Database (http://rgd.mcw.edu/). At the age of 4 weeks, the pups were taken away from their mothers and housed in groups of five animals per cage (57×36×20 cm) and kept under standard laboratory conditions (at 22±2°C, 60% relative humidity, and natural light), provided with a standard rodent feed, PK-120-1, Ltd. (Laboratorsnab, Russia), and given water ad libitum.

	Starting from the age of 19 months OXYS and Wistar rats were randomly assigned to three groups (n = 17–24): control diet, diet supplemented with 250 nmol SkQ1 (synthesized as described earlier [33]) or 650 mg NAC (MP Biomedicals, LLC, France) per kg of body weight per day. The weight was measured before the start of treatment and at the end of experiment.

	Hormone levels and the white blood cell counts

	The levels of GH, IGF-1, testosterone and DHEA-S in the blood serum were analyzed before and after treatment with SkQ1 or NAC in OXYS and Wistar rats (two times total for each rat) and compared with intact 3-month-old rats (n=10) of the same strains. GH, DHEA were measured by ELISA (Creative Diagnostics, USA). IGF-1 was measured by ELISA (ALPCO Diagnostics, Salem, NH). Testosterone was measured by ELISA (JSC Vector-Best, Russia). The assays were run using the manufacturer's instructions. For WBC counts peripheral blood was drawn from the tail vein. Blood smears were fixed in methanol and subsequently stained with Wright-Giemsa.

	Statistical analysis

	The data were analyzed using repeated measures ANOVA and nonparametric tests with the statistical package Statistica 6.0. Two-way ANOVA was used to evaluate the differences between rat strains (genotypes) and effects of treatment (antioxidants). To validate the effect of the diets on parameters, the genotype and antioxidants were chosen as independent variables. A Newman-Keuls post hoc test was applied to significant main effects and interactions in order to estimate the differences between particular sets of means. One-way ANOVA was used for individual group comparisons. Data are represented as mean ± S.E.M. Comparisons between means were analyzed with one-way or repeated measures analysis of variance (ANOVA). Results were considered statistically significant if p value was less than 0.05.
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	Abstract

	Early stages of many neurodegenerative diseases, such as Alzheimer's disease, vascular and frontotemporal dementia, and Parkinson's disease, are frequently associated with Mild Cognitive Impairment (MCI). A minimally invasive screening test for early detection of MCI may be used to select optimal patient groups in clinical trials, to monitor disease progression and response to treatment, and to better plan patient clinical care. Here, we examined the feasibility of using pairs of brain-enriched plasma microRNA (miRNA), at least one of which is enriched in synapses and neurites, as biomarkers that could differentiate patients with MCI from age-matched controls. The identified biomarker pairs fall into two sets: the “miR-132 family” (miR-128/miR-491-5p, miR-132/miR-491-5p and mir-874/miR-491-5p) and the “miR-134 family” (miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370). The area under the Receiver-Operating Characteristic curve for the differentiation of MCI from controls using these biomarker pairs is 0.91-0.95, with sensitivity and specificity at 79%-100% (miR-132 family) and 79%-95% (miR-134 family), and p < 0.001. In a separate longitudinal study, the identified miRNA biomarker pairs successfully detected MCI in majority of patients at asymptomatic stage 1-5 years prior to clinical diagnosis. The reported biomarker pairs also appear useful for detecting age-related brain changes. Further testing in a larger study is necessary for validation of these results.

	Introduction

	Neurodegenerative diseases comprise a large group of pathologies caused by metabolic changes in brain cells, loss of synapses and other compartments of neurons, and, ultimately, neuronal death [1]. Due to increased lifespan, neurodegenerative diseases, such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington Disease, vascular dementia and others, have become very common in developed countries. 13.9% of people age 71 and older in the United States have dementia [2]. Currently, an estimated 5.4 million people have AD in the US alone [2]. A brain's ability to compensate for the dysfunction and loss of neurons, occurring over a long period of time, results in late clinical manifestation of symptoms of AD and other dementias. At late stages of neurodegeneration, serious morphologic changes in the brain, including a massive loss of neurons, have already occurred, and, as a consequence, successful pharmacological intervention is not feasible. Thus, diagnostic methods based on detection of early events in the development of AD and of other dementias are highly desirable.

	Mild cognitive impairment (MCI) is usually defined as an intermediate state between normal aging, and AD and other dementias, representing the first stage when clinical symptoms become evident [3-5]. On average, MCI patients convert to dementia at a rate of 10-15% annually [5,6]. Currently, the disease progression of MCI patients cannot be reliably predicted. First, up to 40% of MCI patients revert to normal status [7,8], and autopsy studies demonstrate that a substantial percentage of MCI patients do not develop AD pathology [9,10]. Second, approximately 20% of MCI patients, who progress to dementia, are diagnosed with neurodegenerative diseases other than AD, such as vascular, Lewy body, Huntington, Parkinson, and other dementias [9,11]. Third, disease progression varies from slow to intermediate to rapid [12]. Moreover, MCI is not a homogeneous pathology and is currently described as two clinical conditions - with amnestic symptoms (aMCI) and without amnestic symptoms [8,13]. Some publications have reported that aMCI converts to dementia more frequently [14,15]. However, other authors have not found significant difference in the conversion rate for the two MCI forms [16,17].

	Currently, diagnosis of AD and other forms of dementia is based on analysis of the patient's cognitive function. Amyloid plaques between neurons, neurofibrillary tau-tangles, and an overall shrinkage of the brain tissue are the hallmarks of AD, and there have been many attempts to develop diagnostic tests based on these phenomena. Recently published data have demonstrated high sensitivity of AD detection by measuring concentrations of the three protein biomarkers in the cerebrospinal fluid (CSF): beta-amyloid protein 1-42, total tau protein, and phosphorylated tau181P protein [18,19]. However, the invasiveness of the CSF collection procedure makes such assays challenging for everyday clinical use. New imaging techniques, including PET scan for in vivo detection of beta-amyloid deposition, are becoming more sensitive and specific but are not suitable for first line screening [20-22]. Several groups have reported encouraging early data on the development of blood assays for AD diagnosis based on analysis of a large number of proteins or antibodies in human blood [23-25].

	Neurodegenerative diseases are characterized by neuronal death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for frontotemporal dementia. However, loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by metabolic changes, such as formation of beta-amyloid plaques and tau protein tangles in AD [1], followed by synaptic dysfunction, synaptic loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects [26-29]. Numerous studies are devoted to description of axon destruction with shedding of membrane-enclosed “axosomes”, axon, dendrite and spine pruning, and disassembly of synapses [30-33]. Thus, different processes are characteristic of early and late stages of neurodegeneration and different molecular tests may be needed for early detection of the pathology and monitoring of the pathology progression versus diagnosis and monitoring of a late stage disease.

	The present study evaluates the hypothesis that neurite and synapse destruction, which are pathologic processes characteristic of early stages of AD, other neurodegenerative diseases, and MCI syndrome in general, can be detected in vitro by quantitative analysis of brain-enriched cell-free miRNA in the blood. MicroRNA (miRNA) is a class of non-coding RNA, whose final product is an approximately 22 nt functional RNA molecule. They play important roles in the regulation of target genes by binding to complementary regions of messenger transcripts and repressing their translation or regulating degradation [34,35]. Thus, miRNA are important epigenetic regulators of numerous cellular processes [35-37]. Many of miRNA are specific to or are over-expressed in certain organs/tissues/cells [38-41]. Some miRNA, including those that are cell-specific, are also enriched in certain cellular compartments, particularly in axons, dendrites and synapses [42-46]. Changes in expression of some miRNA were found in neurons of patients with AD and other neurodegenerative diseases [47-49], as well as in animal models of AD [50,51]. Importantly, cell-free miRNA have been shown to be stable in blood samples [52].

	Our approach for developing a non-invasive assay for detection of MCI is based on analysis of levels of brain-enriched miRNA, including neurite- and synapse-enriched miRNA, in plasma and identification of miRNA biomarker pairs capable of successfully differentiating MCI patients from aged-matched controls.

	Results

	Selection of miRNA for pilot study

	Two approaches are frequently used for the selection of promising miRNA biomarkers for detection of various cancers and other diseases. The first approach is based on analysis of hundreds of miRNA using miRNA arrays with subsequent validation of potential biomarkers by RT-PCR. In spite of an obvious advantage of this approach (i.e., the analysis of huge miRNA numbers), its disadvantages, namely lower sensitivity and higher variability, make it less suitable for the analysis of cell-free circulating miRNA in plasma or serum: (i) concentrations of many miRNA in plasma are low, and (ii) dramatic changes in miRNA levels should not be expected for a chronic pathology. The second approach is based on analysis of miRNA, whose expression level changes due to a pathology development. This approach also has certain limitations due to potential involvement of the same miRNA in diseases of various organs and because higher expression of miRNA in an affected organ is not necessarily accompanied by an increase in its plasma level [53,54]. In this study we selected the initial pool of miRNA among brain- and neuron-enriched miRNA, suggesting that variations of their concentrations in plasma, if any, are most likely caused by changes in neurons and not in other cell types or organs. Since MCI and early stages of AD are associated with neurite and synapse destruction, we included in the study miRNA, which are not only enriched in neurons but are also known to be present in neurite and synapses [38-46] and involved in neurite- and synapse-associated processes (The miR-Ontology Data Base: http://ferrolab.dmi.unict.it/miro/), suggesting that axon, dendrite and spine pruning and synaptic loss can lead to appearance of these miRNA in the extracellular space and ultimately in the bloodstream. 32 miRNA (Table 1) were selected for the pilot study based on the criteria described above and analyzed by individual RT-PCR, currently the most sensitive and the least variable technique.

	Table 1. List of miRNA tested in the pilot study

	(Highlighted are miRNA selected as potential biomarkers for further analysis)

	
		
				Number

				MicroRNA

		

		
				1

				has-miR-7

		

		
				2

				has-miR-9

		

		
				3

				has-miR-9*

		

		
				4

				has-miR-98

		

		
				5

				has-miR-124

		

		
				6

				has-miR-125b

		

		
				7

				has-miR-127-3p

		

		
				8

				has-miR-128

		

		
				9

				has-miR-132

		

		
				10

				has-miR-134

		

		
				11

				has-miR-137

		

		
				12

				has-miR-138

		

		
				13

				has-miR-149

		

		
				14

				has-miR-181a

		

		
				15

				has-miR-181b

		

		
				16

				has-miR-181a*

		

		
				17

				has-miR-218

		

		
				18

				has-miR-323-3p

		

		
				19

				has-miR-330-3p

		

		
				20

				has-miR-370

		

		
				21

				has-miR-382

		

		
				22

				has-miR-383

		

		
				23

				has-miR-409-3p

		

		
				24

				has-miR-433

		

		
				25

				has-miR-485-3p

		

		
				26

				has-miR-487b

		

		
				27

				has-miR-491-5p

		

		
				28

				has-miR-539

		

		
				29

				has-miR-770-5p

		

		
				30

				has-miR-874

		

		
				31

				has-miR-935

		

		
				32

				has-miR-939

		

	

	Pilot study for selecting promising miRNA biomarkers. The concentrations of miRNA were measured in plasma samples of MCI and age-matched donors with normal cognitive function (Table 2), 10 samples in each group, by RT-PCR. miRNA with low (mean Ct>36) or undetectable plasma concentrations were excluded from the analysis. The ratios of levels of all possible miRNA pairs (2−ΔCt) were calculated using a software algorithm developed at DiamiR (see Supplemental Materials). Thirteen miRNA, miR-7, miR-125b, mir-128, miR-132, miR-134, miR-323-3p, miR-382, miR-874, miR-9, miR-127-3p, miR-181a, miR-370, and miR-491-5p, formed pairs differentiating MCI from age-matched controls with p<0.05; these miRNA were selected for further analysis.

	Table 2. Demographics of plasma donors

	
		
				Clinical Diagnosis

				Number

				Age

				Sex

				MMSE

		

		
				 

				 

				Mean

				Range

				Male/Female

				(mean ± SD)

		

		
				Pilot Study

				 

				 

				 

				 

				 

		

		
				Age matched controls (AMC)

				10

				77.4

				71-85

				5/5

				28.9 ± 1.1

		

		
				Mild cognitive impairment (MCI)

				10

				81.7

				75-87

				5/5

				28.1 ± 1.4

		

		
				Main Study

				 

				 

				 

				 

				 

		

		
				Young control (CY)

				20

				36.5

				21-50

				11/9

				29.7 ± 2.6

		

		
				AMC

				20

				80.2

				76-86

				12/8

				29.2 ± 1.3

		

		
				MCI

				20

				79.9

				72-89

				15/5

				25.8 ± 3.5

		

		
				AD

				20

				76.9

				63-89

				13/7

				20.8 ± 8.7

		

		
				Longitudinal study

				19

				77.0

				73-84

				10/9

				28.8 ± 1.3

		

	

	Feasibility study for differentiation of MCI and AD from Age-Matched Controls

	The concentrations of 13 miRNA selected in the pilot study were determined by the single target TaqMan® miRNA qRT-PCR assay (Applied Biosystems) in the plasma samples of amnestic MCI patients, AD patients and age-matched donors, 20 samples in each group (Table 2). The ratios of levels of all possible miRNA pairs were calculated. The data obtained in this set of experiments are reported in Fig. 1 and S1. Receiver-Operating Characteristic (ROC) curves for miRNA pairs with the highest sensitivity and specificity are presented in Fig. 2.
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	Figure 1. Ratios of miRNA levels (biomarker pairs) in plasma of age-matched controls, MCI, and AD patients. The concentrations of miRNA in plasma samples of MCI and AD patients, and age-matched donors with normal cognitive function, 20 samples in each group, were measured by RT-PCR and the ratios of various miRNA were calculated as 2−ΔCt × 100. Here and in other figures with box and whisker plots the results are presented in the Log10 scale. The upper and lower limits of the boxes and the lines inside the boxes indicate the 75th and 25th percentiles and the median, respectively. The upper and lower horizontal bars denote the 90th and 10th percentiles, respectively. The points indicate assay values located outside of 80% data. AMC: age-matches controls; MCI: MCI patients; AD: AD patients.
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	Figure 2. Receiver-Operating Characteristic (ROC) curve analysis of differentiation between MCI patients and age-matched controls obtained with different biomarker pairs. The areas under the ROC curve (AUC) are reported. Sensitivity, specificity and accuracy for each biomarker/normalizer pair are calculated for the “cutoff” point (indicated as a dot on each plot); the cutoff point is the ratio of paired miRNA, at which a sample is equally likely to belong to the AMC and the MCI groups (see Supplementary materials for more details).

	Biomarker pairs miR-128/miR-491-5p, miR-132/miR-491-5p and mir-874/miR-491-5p (Set 1) differentiated MCI from age-matched control with 79%-89% sensitivity and 83%-100% specificity (Fig. 1a-c and 2a-c). The area under the ROC curve (AUC) for miR-128/miR-491-5p, miR-132/miR-491-5p and miR-874/miR-491-5p is 0.95, 0.93 and 0.95, respectively. In addition, biomarker pairs miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370 (Set 2) demonstrated 80%-95% sensitivity and 79-84% specificity (Fig. 1d-f and 2d-f). AUC for miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370 are 0.91, 0.94 and 0.92, respectively.

	Each biomarker Set 1 and 2 includes three different miRNA (numerators) paired with the same miRNA (denominator): miR-128, miR-132 and miR-874 are paired with miR-491-5p and miR-134, miR-323-3p and miR-382 are paired with miR-370. miR-128, miR-132 and miR-134 are located in neurites and synapses [42-46]. miR-323-3p and miR382 are enriched in synaptoneurosomes of rat cortex and hippocampus [55]. The predicted targets of miR-874 indicate its involvement in axonogenesis, neurotransmitter secretion, dendrite morphogenesis, synaptogenesis, synaptic transmission and synaptic vesicle exocytosis [The miR-Ontology Data Base: http://ferrolab.dmi. unict.it/miro/]. Thus, each biomarker pair includes a neurite/synapse-enriched miRNA. A correlation analysis shown in Fig. 3 demonstrates that miR-128, miR-132 and miR-874 form one family of biomarkers (miR-132 family) (Spearman test r values in the pair comparison are in the 0.93-0.95 range) and miR-134, miR-323-3p and miR-382 form another family of biomarkers (miR-134 family) (Spearman test r values in the pair comparison are in the 0.87-0.93 range).
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	Figure 3. Analysis of associations among miR-128, miR-132, and miR-874 (“miR-132 family”); and miR-134, miR-323-3p and miR-382 (“miR-134 family”). Spearman's rank correlation coefficients r along with 95% confidence intervals (MIN & MAX) are shown.

	Biomarker Set 1 and Set 2 also differentiated AD dementia from the age-matched control with p < 0.05, which is not surprising, since about 50% MCI patients progress to AD; however, these biomarkers did not distinguish AD from MCI, and moreover, the overlap between the distributions of biomarkers for AD and age-matched control was greater than the overlap for MCI and age-matched control (Fig. 1). Two factors may help explain this outcome: (i) as numerous synapses and neuritis are destroyed during earlier stages of the disease, the total amount of excreted synapse/neurite miRNA decreases in later stages of AD, and (ii) in later stages of AD, concentrations of other brain-enriched miRNA (denominator in a biomarker pair) in blood may increase due to their presence in neuronal compartments, glial cells or brain areas, which are involved in the pathology progression.

	Supplemental Figure S1 summarizes the results obtained for other miRNA pairs tested for MCI differentiation from age-matched control. These miRNA pairs detect smaller sub-groups of MCI and further studies are necessary to address the question of whether they can be used for detection of particular MCI subsets and for prediction of the disease outcome Retrospective longitudinal study of MCI development in elderly patients with normal cognitive function at enrollment.

	The three biomarker pairs of the miR-132 family (Set 1) have shown overall the highest sensitivity and specificity in differentiating MCI from the age-matched control (Fig. 1, 2). These biomarker pairs were, therefore, used to analyze the development of MCI in elderly patients with initially normal cognitive function, recruited in a small longitudinal study at the Roskamp Institute in Florida. Subjects with normal cognitive functions who were at least 70 years old were enrolled and followed for 2-5 years with cognitive assessment and regular collection of plasma. In the course of the study, some subjects remained cognitively normal, while others progressed to MCI. The plasma samples from the 19 subjects, 10 of whom progressed to MCI, were used for miRNA extraction and analysis. In an effort to minimize the effect that a prolonged storage could have had on quality of the samples, patients were classified disease-positive only if in two samples collected at consecutive time points, the concentrations of at least two of the three biomarker pairs, miR-128/miR-491-5p, miR-132/miR-491-5p, and miR-874/miR-491-5p, were higher than the cutoffs determined in the previous experiment (Fig. 2); i.e. if the positive diagnosis made based on the first sample was confirmed using the blood sample collected from the same patient during the next visit. The data, reported in Table 3, demonstrate that in 7 of the 10 subjects who progressed to MCI (patients 10, 12-16, and 19) the increase in plasma levels of miRNA biomarkers is detectable at asymptomatic disease stage, preceding MCI diagnosis by 6 to 61 months. Among the nine patients who remained MCI free, none were classified disease-positive by our assay according to criteria described above.

	Table 3. Clinical and miRNA-based diagnosis of MCI in elderly subjects with normal cognitive function at the time of enrollment over the course of 2-5 years

	
		
				Patient

				Clinical diagnosis

				Time of clinical diagnosis (number of months past enrollment)

				miRNA-based diagnosis

				Time of miRNA-based diagnosis (number of months past enrollment)

				Number of months the miRNA-based diagnosis preceded the clinical diagnosis

		

		
				C-1

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-2

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-3

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-4

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-5

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-6

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-7

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-8

				Normal

				NA

				Normal

				NA

				NA

		

		
				C-9

				Normal

				NA

				Normal

				NA

				NA

		

		
				MCI-1

				MCI

				18

				MCI

				0

				18

		

		
				MCI-2

				MCI

				33

				Normal

				NA

				NA

		

		
				MCI-3

				MCI

				12

				MCI

				0

				12

		

		
				MCI-4

				MCI

				23

				MCI

				0

				23

		

		
				MCI-5

				MCI

				6

				MCI

				0

				6

		

		
				MCI-6

				MCI

				19

				MCI

				0

				19

		

		
				MCI-7

				MCI

				61

				MCI

				0

				61

		

		
				MCI-8

				MCI

				19

				Normal

				NA

				NA

		

		
				MCI-9

				MCI

				16

				Normal

				NA

				NA

		

		
				MCI-10

				MCI

				28

				MCI

				0

				28

		

		
				NA- Not Applicable

		

	

	Analysis of normal brain aging with selected miRNA biomarker pairs

	The development of MCI, AD and other neurodegenerative diseases on one hand, and normal aging on the other hand share certain common processes, e.g. neurite and synapse destruction and ultimately neuronal death. In this experiment we analyzed whether normal aging could be detected by the same miRNA biomarker pairs. miRNA concentrations in plasma samples from two groups, each comprised of 20 cognitively normal subjects, Group 1 (21-50 years old, “CY”) and Group 2 (76-86 years old, “AMC”), were measured and compared as described above. The data presented in Fig. 4 (Sets 1 and 2) and Fig. S2 (other miRNA pairs) demonstrate that biomarker levels are higher in the plasma of Group 2, “AMC” subjects compared to Group 1, “CY” subjects (p<0.05 top<0.001). Thus, a larger prospective longitudinal analysis of these biomarkers in plasma could potentially provide important information on brain processes associated with normal aging.

	[image: Comparison of miRNA biomarker pairs in plasma of Group 1 (30-50 years old, “CY”) and Group 2 (70-80 years old, “AMC”) individuals with normal cognitive functions]

	Figure 4. Comparison of miRNA biomarker pairs in plasma of Group 1 (30-50 years old, “CY”) and Group 2 (70-80 years old, “AMC”) individuals with normal cognitive functions. The concentrations of miRNA in plasma samples of Group1 (30-50 years old, CY) and Group2 (70-80 years old, AMC) donors with normal cognitive function, 20 samples in each group, were measured by RT-PCR and the ratio of various miRNA was calculated as 2−ΔCt × 100. See the legend to Fig. 1 for the description of the statistical analysis.

	Discussion

	The objective of the present study was to search for plasma miRNA biomarkers that can be used to detect MCI. The results obtained in our experiments have demonstrated for the first time that a minimally invasive test based on analysis of cell-free miRNA circulating in plasma could be feasible for detection of MCI, AD and even asymptomatic stages of neurodegeneration. The use of brain-enriched neurites/synapses miRNA enables detection of early pathologic events occurring in neurons. Further, combination of neurite/synapse miRNA with other experimentally selected brain-enriched miRNA significantly increases assay sensitivity and specificity at early stages of the pathology, most likely due to compensation for a number of variables, such as blood supply, changes in blood-brain barrier permeability and others.

	Two sets of biomarkers have demonstrated high sensitivity and specificity in differentiating MCI from age-matched controls - the miR-132 and miR-134 families paired with miR-491-5p and miR-370, respectively. Although a relatively small number of patients was used in the feasibility study to identify the efficient miRNA biomarker pairs, the data obtained in the longitudinal study (Table 3) and the study of normal brain aging (Fig. 4 and S2) support the findings. Total of 171 plasma samples were analyzed in the experiments reported here. High correlation among members of miR-134 set, namely miR-134, miR-323-3p and miR-382, can be explained by the fact that these miRNA belong to the same cluster (http://www.diana.pcbi.upenn.edu/cgi-bin/miRGen/v3/Cluster.cgi) and are expressed in the same cell types. Close functional relatedness among members of miR-132 set, namely miR-128, miR-132 and miR-874, has not been described before. It is also interesting to note that miR-132 and miR-134 biomarker sets demonstrate higher sensitivity and specificity when paired with different brain-enriched miRNA. The miR-132 set is a strong match with miR-491-5p, miR-181a, and miR-9, while the miR-134 set demonstrates the strongest differentiation between MCI and age-matched controls when paired with miR-370 and miR-127. Correlation between the two miRNA sets (data not shown) is relatively low (r values in the pair comparison Spearman test are in the 0.56-0.79 range) indicating that they possibly reflect distinct pathological processes, or are enriched in different brain areas. A mechanistic explanation for this observation is currently missing, and could be provided by a detailed analysis of expression of all these miRNA in various brain areas and cell types.

	It is important to mention that most of elderly patients and age-matched controls, as well as some of young controls had various non-neurological conditions unrelated to MCI. However, since this is expected to be the case in a real-life test application, such a test should be capable of detecting MCI in subjects with accompanying diseases. Thus, only patients with a history of a stroke or other neurologic pathologies were excluded from the present study. We believe that the ability of selected miRNA pairs to differentiate MCI (and AD) from age-matched control in spite of the presence of other pathologies supports our approach to biomarker selection from brain-enriched miRNA. The same consideration applies to the comparison between younger and older groups. Additional larger studies are necessary for further data validation, including a prospective longitudinal study. miR-132 and miR-134 families paired with other brain-enriched miRNA effectively distinguish MCI and AD from age-matched control but do not differentiate MCI and AD from each other. Thus, other biomarkers are necessary for prediction of MCI progression to AD and other dementia. The experiments aimed at detection of the MCI sub-types that will progress to AD dementia are currently in progress at DiamiR. The differentiation of AD from other dementias (vascular, frontotemporal, Lewy bodies, etc.) is another important goal and we hope that analysis of miRNA enriched in different brain areas could be useful for differential diagnosis. Further, there are other brain-enriched miRNA, which were not included in the present study but could be found useful as potential biomarkers in the future. Additional promising miRNA along with those described in the present study could be used for detecting other neurodegenerative diseases and for differential diagnosis.

	Early detection of MCI patients by a minimally invasive, screening test may make more invasive and expensive tests for detection of AD and other neurodegenerative diseases more practical, since the latter can be applied to the pre-selected cohorts of patients.

	Numerous data demonstrate changes in miRNA expression associated with cellular senescence and in vivo aging [56-59]. Li et al. described increase in levels of miR-34a in the brain, peripheral blood mononuclear cells, and plasma during aging in mice [60]. It is intriguing that in our study the miRNA biomarker pairs found to differentiate MCI from age-matched controls can be used to register changes during normal brain aging, suggesting that the approach reported in the present study enables detection of processes common for normal aging and MCI development, e.g. destruction of synapses, and could be helpful in basic neurophysiology research of aging. A larger study with subjects representing various age groups (20-30, 30-40…80-90 y. o.) is necessary for validation of these initial findings.

	Recently, the National Institute of Aging and Alzheimer's Association has developed new diagnostic guidelines for AD [61-63]. The guidelines contain updated classification of the AD phases, namely the dementia phase, the symptomatic pre-dementia phase (MCI), and the asymptomatic, preclinical phase of AD (pre-MCI). The new guidelines also provide recommendations for the diagnosis of pre-MCI, MCI and AD dementia and stress the current lack of and a great need for reliable biomarkers, which can be used for detection of MCI and preclinical phases of AD. We believe the current study makes a significant contribution towards this objective.

	Materials and Methods

	Plasma samples

	The plasma samples used in the present study were collected at the Roskamp Institute Memory Center between 2005 and 2009 under the protocol approved by the Western Institutional Review Board (WIRB). An IRB approved written consent was obtained from each subject recruited in the study and the informed consent process was conducted in accordance with the International Conference on Harmonization (ICH) guidelines. If a subject was not medically capable or legally competent to provide consent for participation in the study, a written consent was obtained from a family member, a legally authorized representative (LAR) or health care surrogate (under 21 CFR 50: exceptions from general requirements for informed consent). An assent was obtained from the participant. Venous blood was collected in EDTA vacutainers (BD Diagnostics), which were immediately centrifuged at 1380 × g for 5 minutes. Samples were maintained at 4°C during the plasma preparation process and aliquoted immediately in 1.5ml Eppendorf tubes for storage at −80°C until further use. The use of the samples in the present study was additionally approved by the WIRB in 2010. The quantity and the type of the samplesused in the present study are as follows (Table 2): Pilot Study: amnestic MCI and age-matched donors (> 70 years old) with normal cognitive function, 10 samples in each group; MCI and AD detection: amnestic MCI patients, AD patients and age-matched donors (> 70 years old), 20 samples in each group; Retrospective longitudinal study: samples from 19 subjects, each subject at least 70 years old and having normal cognitive function at the time of the first plasma collection, multiple samples collected from each subject over the course of 2-5 years; Detection of normal brain aging: samples from 20 subjects, 30-50 years old and normal cognitive function, as well as the samples from 20 subjects, each at least 70 years old and having normal cognitive function, which were used as control in the MCI and AD detection study.

	MCI and AD diagnosis

	The age-matched controls (AMC) were either recruited from the Roskamp Institute Memory Clinic screening programs conducted in Tampa and Sarasota, FL or through the Alzheimer's disease Anti-inflammatory Prevention Trial (ADAPT) Tampa, FL site. The subjects from ADAPT underwent a brief neuropsychological assessment at enrollment as described elsewhere to determine cognitively normal status [64]. For all AMC, mini mental status examination (MMSE) was also administered to determine cognitive status. In addition, AMC subjects maintained independent activities of daily living and were free of any active neurological illness, psychiatric disorders, or other medical conditions that would potentially interfere with their cognitive performance. Individuals suspected of having MCI or AD underwent a comprehensive dementia work-up which included physical and neurological examinations, laboratory studies (i.e., CBC, chemistry count, sedimentation rate, vitamin B12 and folic acid levels, thyroid test and syphilis serological test) and neuroimaging (i.e., MRI or CT), as applicable. A more comprehensive neuropsychological assessment was also administered as part of the dementia work-up and consisted of expanded Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery [65]. Learning and memory functions were evaluated using the CERAD 10-word, 3-trial list learning task and CERAD delayed recall measure and Logical Memory I and II of the Wechsler Memory Scale - Revised [66]. The CERAD Constructional Praxis test and Judgment of Line Orientation Test measured visuospatial ability [67]. Language and/or executive measures included 15-item Boston Naming Test, Animal Fluency, the Control Oral Word Association Test (COWAT; CFL); and the similarities subtest from the Wechsler Adult Intelligence Test - 3rd Revision (WAIS-III) [68]. The Trails A of the Trail Making Test and Digit Symbol from the WAIS-III were utilized to measure visual scanning and processing speed. Set-shifting (an executive ability) was measured using Trails B and the Letter Number Sequencing subtest from the WAIS-III [69]. Following dementia work-up, a consensus team determined cognitive status using published diagnostic criteria. The diagnosis of AD was made using NINCDS-ADRDA [70] and amnestic MCI according to the Petersen criteria [71]. MCI and AD patients as well as control subjects with a known history of a stroke or other neurologic pathologies were excluded from the study.

	Plasma RNA extraction and qRT-PCR miRNA analysis miRNA isolation and qRT-PCR analysis of the initial set of 32 miRNA, performed in the course of the Pilot study, were performed by Gene Logic (an Ocimum Biosolutions Company, Gaithersburg, MD, USA) according to the following protocol. RNA was extracted from 250 μl aliquots using mirVanaTM Paris Extraction Kit and protocol (Ambion). 2.5×107 copies of Arabidopsis thaliana miR-159a (ath-mir-159a) were spiked per 0.25 μl plasma after addition of guanidine-containing denaturing solution for evaluating miRNA yield. Single target qRT-PCR was performed using the TaqMan® Reverse Transcription Kit and miRNA-specific stem-loop primers (Applied Biosystems). Final PCR was performed in triplicate using 3.3 μl plasma equivalents. Based on the quantitative measurement of spiked ath-miR-159a, average yield of miRNA from plasma was about 70%.

	miRNA isolation and qRT-PCR analysis in all other experiments were performed by Asuragen Inc. (Austin, TX, USA) according to the following protocol. RNA was extracted from 200 μl aliquots using Asuragen's proprietary protocol, which is based on Trizol treatment and silica (Ambiom Glass Fiber Microcolumn) binding. Single target qRT-PCR was performed using the TaqMan® Reverse Transcription Kit and miRNA-specific stem-loop primers (Applied Biosystems). RT step was performed in triplicate and 2 μl plasma equivalents were present in final PCR. The concentrations of the 13 miRNA (8 neurite/synapse miRNA and 5 other brain-enriched miRNA), were determined in the plasma samples of amnestic MCI patients, AD patients and age-matched donors, 20 samples in each group (Table 2). The sample size for this study was determined by a standard formula for a case-control study [72] using power = 0.8, significance level = 0.05 and the ratio of standard deviation to difference between comparison groups set to 1. The ratios of levels of all possible miRNA pairs were calculated.

	Bioinformatics analysis and statistical methods

	In addition to biological factors, such as levels of expression, secretion, blood-brain barrier permeability, etc., miRNA yield from plasma may depend on a purification technique. Further, presence of RT-PCR inhibitors in the blood may vary from subject to subject and distort an experimental outcome. Therefore, data normalization becomes an issue of critical importance. Two normalization approaches that are commonly used in miRNA studies include: (i) normalization per the least variable miRNA, such as spiked non-human miRNA or ubiquitous miRNA, whose concentration is expected to be minimally changed by a pathology being analyzed [73], and (ii) normalization based on an experimental search for miRNA pairs, which most effectively differentiate two populations, e.g. pathology versus control [74,75]; ratios of levels of all possible miRNA pairs from the same sample are calculated and the most promising pairs (self-normalizing biomarkers) are selected for further testing and validation. The advantage of the second approach is that in certain cases miRNA, whose concentrations are changed due to a pathology in opposite directions, can be effective in differentiating investigated populations. We use the latter approach and, in addition to brain-enriched miRNA present in neurites and synapses, measure other brain-enriched miRNA to compensate for variations in blood supply, blood/brain barrier permeability, and other brain-specific factors.

	All statistical calculations were performed with the use of custom software developed at DiamiR LLC (Princeton, NJ), as described in the Supporting Information (Software, Calculations, Graphical Interface). Mann-Whitney U-tests were used to evaluate significance of differentiation of any two patient groups by various miRNA pairs. Spearman's rank correlation coefficient was calculated to estimate associations between various biomarkers. P-value < 0.05 was considered significant; actual p-values are reported for each experiment. Receiver-Operating Characteristic (ROC) curves were constructed and the area under ROC curves (AUC) was calculated to evaluate sensitivity and specificity of various biomarker sets. The cutoff points on the ROC curves, at which accuracy of MCI detection is maximal, were selected.
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	Abstract

	MicroRNAs in blood samples have been identified as an important class of biomarkers, which can reflect physiological changes from cancer to brain dysfunction. In this report we identify concordant increases in levels of expression of miR-34a in brain and two components of mouse blood samples, peripheral blood mononuclear cells (PBMCs) and plasma, from 2 day old neonates through young adulthood and mid-life to old age at 25 months. Levels of this microRNA's prime target, silent information regulator 1 (SIRT1), in brain and the two blood-derived specimens decrease with age inversely to miR-34a, starting as early as 4 months old, when appreciable tissue aging has not yet begun. Our results suggest that: 1. Increased miR-34a and the reciprocal decrease of its target, SIRT1, in blood specimens are the accessible biomarkers for age-dependent changes in brain; and 2. these changes are predictors of impending decline in brain function, as early as in young adult mice.

	Introduction

	The list of genetic factors pertinent to life-span determination has been growing by leaps and bounds, to define age-related physiological changes [1]. A steady loss of function in multiple vital organs has been shown to correlate with aging, accompanied by increased incidence of a wide range of diseases such as neurological disorders, metabolic disorders e.g. diabetes, and cancer [2]. Modification of signaling cascades, such as highly conserved signaling pathways including insulin/Insulin-like growth factor 1 (IGF1), target of rapamycin (TOR) and sirtuin, for enhanced cellular responses to stress, is recognized as key to life span extension and accompanying reduced age-related pathology [3]. The search for biomarkers for aging has led to the identification of unique leads in blood samples, a relatively noninvasive method to acquire experimental specimens. However, the main findings in circulating blood reflecting systemic phenomena are protein-based changes, mostly connected to agerelated perils such as cancer, atherosclerosis, and cardiovascular dysfunction [4]. A few studies linking blood-based changes to normal aging involve a serum protein pattern that proves to be a reliable index for aging in rat, independent of pathologies [5]; the techniques commonly used, 2-D gel electrophoresis or proteomic profiling, have led to identifying various proteins as potent blood-based biomarkers [6]. Another such example is the observation that circulating IGF-1 in centenarians with robust cognition is low [7], while those suffering Alzheimer's disease (AD) show high levels of this protein in their blood [8].

	Non-coding RNAs are prominent epigenetic factors, along with nucleic acid modifications such as DNA methylation and histone/chromatin modification [9]. Among all the small non-coding RNAs, microRNAs (miRNAs) have been studied in detail; they are generally transcribed by RNA polymerase II, rarely by RNA polymerase III [10]. MiRNAs modulate protein regulation at the post-transcriptional level, because their seed sequences have perfect or partial complementarity to the coding region or the 3'- untranslated region (UTR) of one or more target mRNAs, leading to mRNA degradation in the former case, and inhibition of protein translation in the latter; either way, they serve as negative regulators of gene expression [10, 11]. Early studies illustrating the role of miRNAs in aging found that expression of C. elegans lineage 4 (lin-4) miRNA is needed for extended lifespan, while abridged expression leads to shortened lifespan [11, 12]. We also reported a set of miRNA expressions unique to peripheral blood mononuclear cells (PBMCs) of AD victims [13], as well as changes in miRNA expression during aging in brain and liver of mice and rats, including long-lived calorie-restricted and mutant mice with extended life span [14-17].

	In general, blood samples can be separated into two major components: PBMCs, composed of lymphocytes, monocytes, megakaryocytes, platelets, etc.; and plasma or serum, depending on blood- collecting procedures (adding an anticoagulant produces the former instead of the latter). Our group has shown that miRNA profiles in PBMCs of AD victims differ from those of normal elderly controls (NEC); this led us to suggest that lead microRNAs in PBMCs of AD victims may be biomarkers as a blood-based diagnostic for this disease [18]. In cell-free serum/plasma, microRNAs are repeatedly reported to be not only present [19], but also a means for cell-cell communication, secretion, and many other cellular functions associated with cell death, etc. [5, 20, 21]. Recently, major differences in miRNA expression between plasma microvesicles and PBMCs were reported, owing to the origin of these cell-free miRNA expressions in the former case [20]. Plasma miRNA expression is a predictive and diagnostic tool for lung cancer; changes in plasma miRNA expression imply staging and prognosis [22]. Blood associated microvesicles contain miRNAs suggested for inter-cellular and inter-organ communication [23]. In brain, circulating microRNAs have been suggested to be vital for neuronal communication [24], and lead microRNAs in blood serve as circulating biomarkers for bipolar disorder and early Huntington's disease [25].

	In this study we report that miR-34a levels in mouse PBMCs and plasma increase with age, as do those in brain, starting at 4 months of age, as documented in samples from 2 days old till 25 months of age. Parallel study of miR-196a shows that the level of this microRNA remains stable with age in all three specimens examined, and therefore serves as a control for age-independent regulation of its expression. Corresponding to this increase of miR-34a, plasma expression of SIRT1, the major target of this microRNA, shows a precipitous reciprocal decrease starting at 4 months of age, while PBMCs exhibit a gradual decrease in SIRT1 from this age onward. In contrast, the SIRT1 level in brain rises from 20 days old till 4 months, and remains at this level without decrease until 12 months of age. The reciprocal expression between miR-34a and SIRT1 in plasma samples is not observed with another target of this microRNA, Bcl2, whose expression in plasma actually declines as early as 7 days after birth and continues to 25 months, while in brain and PBMCs it shows a slight decrease during the same time frame. In brief, our results show here that levels of miR-34a in plasma and PBMCs may serve as a non- invasive biomarker, a circulating ‘footprint’ of brain aging; in particular the rise in the plasma is detected as early as 4 months of age, before any impending decline in this organ begins.

	Results

	Expression levels of miRNAs in blood and brain samples of C57/B6 mice

	Mouse microRNA 34a (mmu-miR-34a) expression increases in brain of older rodents, while a decline in its expression over age is linked to longevity in calorie-restricted mouse brain [13, 16]. SIRT1 and Bcl2 are two major target genes suppressed by miR-34a [17, 26]. In contrast, although miR-196a is elevated in Crohn's disease [27], changes in its level of expression during mouse aging is not yet reported. Thus, our study of microRNA expression over a life span from neonatal to old age was performed with miR-34a as our focus of interest, and miR-196a as a control.

	Total RNA samples extracted from PBMCs, plasma and brain specimens from age groups from 2 days to 25 months were reverse transcribed for quantitative PCR (qPCR) to determine their levels of mmu-miR-34a and mmu-miR-196a. qPCR for these two miRNAs was performed using total RNA samples from all three specimens (Supplemental Figure 1-2); composite graphs of expression of these two miRNAs are shown in Figure 1. Levels of miR-34a are stable from 2 days till 4 months, with subsequent rises in all three tissues; the increases in brain and PBMCs exhibit a similar gradual trend, while the increase in plasma samples rises steeply starting at 4 months. All assays for each animal were repeated three times, and three animals were used per age group; thus, the qPCR results presented here were calculated from nine data points, with three repeats of three different animals. In contrast to the increased miR-34a expression with age, levels of miR-196a remain stable throughout all age groups studied here, from 2 days till 25 months of age. Statistical analysis for each age group is presented in Supplemental Table 1.
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	Figure 1. Age-dependent expression levels of two miRNAs in blood and tissue samples of C57/B6 mice. A graphical representation of expression levels of miRNAs using qualitative PCR, represented as 1/ΔCt values as box plots for brain, PBMC and plasma samples. Age groups included are from early to old age [from 2 days (d) to 25 months (m)]. Panel (A) shows composite graphs for expression of miR-34a, while panel (B) shows the levels of expression of miR-196a in brain, PBMCs, and plasma. (n = 3; three different animals were used from each age group selected for the study.)

	Inverse levels of expression between miR-34a and its target, SIRT1, in blood and brain during aging

	MicroRNA-34a regulates SIRT1 expression both at the pre-transcriptional level, by regulating expression of transcription factor SP1 [16], and also at the post-transcriptional level, by binding to the 3’ untranslated region (UTR) of SIRT1 transcript [28] to repress its expression. Total protein samples extracted from plasma, PBMCs, and brain were subjected to Western blot analysis to determine a possible inverse relationship between SIRT1 and miR-34a levels from 2 days to 25 months old. Decreased SIRT1 expression was observed in both plasma and PBMC samples at 4 months of age, with the former showing a precipitous drop in SIRT1 abundance (Figure 2A & B). However, levels of SIRT1 in brain increase from a steady state during the postnatal period to a stable high level from 28 days to 12 months, before decreasing to 25 months (Figure 2C). A composite graph depicting the expression trends in the three specimens across all age groups shows the precipitous decline in plasma, but gradual decline in PBMCs from 4 months on, and the brain-specific rise at 28 days followed by the decline at 12 months old (Figure 2D). In all, the only sharp inverse relationship detected at early adult life (4-months) between miR-34a and its target, SIRT1, is observed in plasma. All immunoblots were further verified by densitometric measurements of three repeats with three different animals of the same age group, after normalization with β-actin in brain and PBMC samples. Ponceau S stained bands were used to validate equal loading, and selected bands showing consistent levels across the blots were used to normalize SIRT1 expression in plasma samples. The individual graphs may be found as supplemental data (Supplemental Figure 3).
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	Figure 2. Age-dependent expression levels of SIRT1 in blood and tissue samples of C57/B6 mice. Western blot analysis of SIRT1 expression in age groups from 2 days (d) to 25 months (m); panels (A) SIRT1 expression in plasma samples normalized with selected Ponceau S stained band, showing constant levels for all samples used, along with histograms presenting average densitometric values, (B) SIRT1 expression in PBMC samples normalized with β-actin, along with histograms presenting average densitometric values, (C) SIRT1 expression in brain samples normalized with β-actin, along with histograms presenting average densitometric values, (D) Composite graph presenting SIRT1 expression in plasma, PBMC and brain samples. (*p < 0.01, **p < 0.0001; all histograms represent Mean ± SD; n = 3; three different mice used from each selected age group.)

	Expression of miRNA-34a and its target SIRT1 in brain tissue sections from middle and old age C57/B6 mice

	A lack of age-dependent increase in miR-34a expression in the hippocampal region has been previously reported in calorie-restricted mice, as compared to littermate wild type (WT) controls [17]. Here, we performed similar in situ histochemical (ISH) determination of miR-34a, to validate the qPCR results with total brain RNA studies by locked nucleic acid (LNA) probes for this microRNA. Two selected age groups, 10 and 31 months, were chosen to represent specimens before SIRT1 decreases, and beyond the maximal decline. Brain sections of these two age groups were processed for levels of miR-34a expression by in situ hybridization, binding with a locked nucleic acid probe for miR-34a, as well as a control probe for background binding reaction (Figure 3 A & B).
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	Figure 3. Expression of miRNA-34a and SIRT1 in brain tissue sections from middle and old age C57/B6 mice.In situ hybridization detected miR-34a expression using LNA probes. Panels (A) and (B) show expression of miR-34a in cortex and hippocampus of 10 and 31 month old mice. Scrambled LNA probes were used as control for this experiment (Image not shown); (C) graphical presentation of mean intensity values of miR-34a expression in cortex and hippocampus of 10 and 31 month old mice, by immunostaining assay to detect SIRT1 expression. Panels (D-E) and (F-G) show expression of SIRT1 in cortex and hippocampus of 10 and 31 month old mice, by DAPI staining to detect nucleus and section integrity (Image not shown); (H) graphical presentation of mean intensity values of SIRT1 expression in cortex and hippocampus of 10 and 31 month old mice. (*p < 0.01, **p < 0.0001; all histograms represent Mean ± SD; n = 3; three different biological samples from each age group.)

	Intensity of LNA probe reaction was most noted in the hippocampus, more than the cortex, in both age groups. This intensity differential was further verified by densitometric measurements of three serial sections each from three different animals of the same age groups (Figure 3C). Expression data obtained using in situ hybridization confirmed the qPCR results, and validated the trend of increased miR-34a expression from 10 to 31 months of age in brain.

	Immunostaining to detect SIRT1 in middle and old age, i.e. 10 and 31 months respectively, was performed on sister specimens of those used for in situ hybridization with the LNA probe for miR-34a. Decreased SIRT1 from 10 to 31 months was observed most significantly in hippocampus, validating the inverse relationship with miR34a expression in brain, described by the grind-and-find qPCR assays and Western blotting for SIRT1 levels. Figure 3D-G shows in situ hybridization results of heightened miR-34a expression in hippocampus, corresponding to decreased SIRT1 presence. All immunostaining results were further verified by densitometric measurements of three repeats with three different animals (n = 3) (Figure 3 C, H).

	Levels of Bcl-2, another target of miR-34a, in blood and tissue samples of C57/B6 mice

	Another target of interest of miR-34a is Bcl2. Western blots for 26 kilodalton Bcl2 expression were performed using protein samples of brain, PBMCs and plasma from all age groups used for the qPCR assays of the two microRNAs. A decline in Bcl2 was observed starting as early as 7 days after birth in plasma (Figure 4 A-C), continuing until old age at 25 months. In contrast, Bcl2 in brain and PBMCs show stable abundance, with a gradual decrease from 2 months to old age. A composite graph showing the decline in Bcl2 is shown in Figure 4D; the individual graphs may be found as supplemental data (Supplemental Figure 4). Interestingly, the decrease of Bcl2 in plasma starts at 7 neonatal days, and continues its downward trend in plasma samples. All immunoblot data were verified by densitometric measurements of three repeats with three different animals, after normalization with β-actin for tissues and PBMC samples. For normalization of Bcl2 expression in plasma samples, Ponceau S stained bands were used to confirm equal loading (n = 3).

	[image: Age-dependent expression levels of Bcl-2 in blood and brain tissue samples of C57/B6 mice]

	Figure 4. Age-dependent expression levels of Bcl-2 in blood and brain tissue samples of C57/B6 mice. Western blot analysis for Bcl-2 levels in age groups from 2 days (d) to 25 months (m); panels (A-B-C) Bcl-2 expression normalized with Ponceau S stained bands in plasma, and with β-actin in brain and PBMC samples, along with histograms presenting average Bcl-2 expression densitometric values; (D) Composite graph presenting Bcl-2 expression in plasma, PBMC and brain samples as average densitometric intensity. All graphs represent Mean ± SD. n = 3; three different mice from each age group.

	Age-dependent changes of levels of p53 and its acetylated form in blood and brain samples of C57/B6 mice

	SIRT1 is an evolutionarily conserved molecule with deacetylation properties; one of its targets is p53, whose acetylation leads to increased transcriptional activation of miR-34a expression [29]. Western blot analysis was performed using total protein samples from PBMCs, plasma and brain from mice aged 2 days to 25 months. Expression of p53 and its acetylated form was detected; Ponceau S stained bands for plasma samples and β-actin for PBMCs and brain were used as normalization controls (n = 3). Figure 5 shows levels of total and acetyl-p53 in plasma (panel 5A), PBMCs (panel 5B) and brain (panel 5C), with the percentage of the latter in the total protein pool illustrated in Panel 5D. The acetyl-p53 proportion remains stable from 2 days until 2 months in both plasma and PBMC specimens; this is followed by a steady increase between 4 and 12 months, after which it stays the same in the remaining old age groups, as observed in brain. The acetyl-p53 fraction in brain exhibits a steady increase from 2 days old till old age. Interestingly, proportions of acetyl-p53 in the total p53 protein pool in all three specimens, plasma, PBMCs, and brain, are similar from 12 to 25 months of age, again suggesting that circulating blood acetyl/total p53 may be an additional systemic marker for age-related changes in brain.
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	Figure 5. Age-dependent changes in ratio of acetylated to total p53 in blood and brain samples of C57/B6 mice. Western blot analysis of acetylated p53 proportion in age groups from 2 days to 25 months; Panels A, B, and C show acetylated P53 proportion normalized with Ponceau S in plasma (Panel A), and with β-actin in PBMCs and brain samples, along with histograms presenting the average densitometric values. Panel D presents a composite graph of the percentage of acetylated P53 expression in the total p53 protein pool in plasma, PBMC and brain samples. (*p < 0.01, **p < 0.0001; all histograms represent Mean ± SD; n = 3; three different biological samples from each age group)

	Discussion

	Central to our findings is the observation that miRNA-34a expression in PBMCs and brain shows concordant steady increase from neonatal to old age, with levels of miR-34a in plasma showing a sharp rise from 4 to 25 months of age. This rapid gain of miR-34a in plasma is inversely related to SIRT1 abundance in this blood specimen, which declines precipitously from 4 to 25 months. However, in brain and PBMCs, this reciprocal expression between increased miR-34a and decreased SIRT1 is not observed until after 12 months of age. This pattern, starting at 4 months in plasma and 12 months in brain and PBMCs, is not observed with another major target of this microRNA, Bcl2, whose downward trend starts at neonatal time in plasma, while in brain and PBMCs it remains stable. In situ hybridization data and histochemical studies indicate the hippocampus as the venue of the most prominent local increase in expression level of miR-34a with age, and reciprocal decrease of SIRT1 in the same brain region in old mice [26]. Taken together, our results suggest that: 1. Increased levels of expression of miR-34a in plasma and PBMCs correspond to those observed in brain, with the former most dramatically preceding the latter two; and 2. the sharp increase in plasma miR-34a, and the decrease of SIRT1, starting at 4 months of age, may serve as noninvasive biomarkers for impending age-dependent brain decline at 12 months or later in mice.

	The major difference between the two blood samples, PBMCs and plasma, is the source of their RNA and protein specimens. PBMCs largely consist of cells making up this component, including lymphocytes, monocytes, macrophages, etc., while plasma components are released from various tissues into circulating blood through secretion, exocytosis, cell-to-cell communication, and even cell death, including both apoptosis and necrosis [30]. Thus, in mammals, cell-free plasma RNA and protein may be true ‘foot-prints’ of the entire organism's health status. Obviously, changes in PBMC RNA and protein profiles follow the same age-dependent regulation as other organs, i.e. cell-type specific. Nevertheless, our observations suggest that increased levels of miR-34a in PBMCs and plasma may be a noninvasive biomarker reflecting changes in brain during aging, with increased levels of this microRNA in plasma potentially serving as an early biomarker for impending changes in the brain.

	Functionally, miR-34a is well recognized as a tumor suppressor in brain and many other tissues; its absence is associated with neoplastic growth, including glioma and brain tumor [31], explaining the needed increase during early adult life for protection against neoplasms of many cell types, including those in the central nervous systems (CNS). However, its continuing increase presents a classical case of antagonistic pleiotropy, i.e. a genetic trait beneficial in early life but posing adverse consequences in later life. This is largely due to the fact that, as do many other miRs, miR-34a silences multiple targets, suppressing cell-cycle traverse genes such as cdks and cyclins; but its silencing action on SIRT1 may be the most detrimental [31-33]. Although the notion of a direct role for SIRT1 and its sisters in extending life span has come into question recently [34], they clearly suppress age-dependent pathologies, reducing diabetes, obesity, neurodegeneration, etc. [35]. Thus, miR-34a's continuing rise in late life may cause a reduction of SIRT1, a loss ill afforded by older organisms [35-37].

	Complicating further the see-saw relationship between miR-34a and SIRT1 expression is the role of p53 as transcriptional activator for this microRNA's expression [33]. Activation of miR-34a is regulated via binding of acetylated p53, which in turn is controlled by deacetylation by mammalian SIRT1, thus forming a feedback loop [33]. At first glance, our results may suggest that this loop may be disrupted in older mouse brain and PBMCs, as well as in many other tissues with their ‘foot-print’ in the plasma, due to increased miR-34a, decreased Sirt1 levels, and increased levels of acetylated p53. However, a recent report by Lee, et al. [36] of activation of nuclear bile acid receptor, Farnesoid X Receptor (FXR), recruiting the Small Heterodimer Partner (SHP) to the p53 binding site in miR-34a's promoter region, and thus preventing this microRNA's activation and its downstream suppressing action on SIRT1, presents yet another layer of control. Abnormality of this positive feedback between FXR/SHP to decrease miR-34a and increase SIRT1 is observed in many age-related metabolic diseases [36]. Our finding of continuing rise of miR-34a with age suggests that either continuing acetyl-p53 increase overwhelming the SHP-binding or other putative factors involved, thus disable the FXR/SHP role in inhibiting this microRNA activation, and cause the absence of SIRT1 in many age-related metabolic diseases.

	As noted above, among the various functional impacts of p53, from tumor suppression to induction of apoptosis, there emerges yet another vital role in regulating signaling networks through controlling miR-34a transcription activation. This adds to the complexity of how p53 governs life span determination; contrasting scenarios report high tumor incidence in p53 knockout mice, thus shortening life span, while p53 overexpression induces accelerated aging [38, 39]. Therefore, p53 regulation is another case of antagonistic pleiotropy, protective in the young but deleterious in older organisms. For example, in the context of regulating intertwining networks, p53 seems to participate in life extension as a downstream activator for apoptosis in the well-known IGF1/mTOR pathway, suppressing tumor development; but its continuous increase in older life may overwhelm SHP's binding to miR-34a and become the dominant activator for miR-34a, resulting in the SIRT1 loss described above. To further thicken the soup, in a large human population study of p53 polymorphism, the p53-P72 genotype is associated with reduced fertility and increased longevity [40]. In brain, the role of p53 is associated with cognitive robustness, by regulating glucose metabolism, as well as neuronal apoptosis, eliminating deleterious, damaged neurons to make room for neurogenesis [40]. Here, SIRT1 is involved in neuroprotective signaling, reducing the formation of β-amyloid, the pathogenic form of amyloid precursor protein (APP), one of the two main diagnostic histopathologies of AD, along with neurofibrillary tangles. Paradoxically, β-amyloid activates p53, which in turn activates miR-34a and suppresses SIRT1 [41], as one of the putative mechanisms underlying accelerated aging when this tumor-suppressing transcriptional factor is overexpressed. The complexities presented here in p53-dependent regulation, and how miR-34a participates in this puzzle for brain aging, will demand future system biology investigation to unravel their mysterious but fascinating roles in regulating aging and life span determination. Nevertheless, our finding of the continuous increase of both acetyl-p53 and miR-34a in blood and brain during aging suggests them as two noninvasive biomarkers for aging in the central nervous system.

	Circulating microRNAs, specifically in plasma, may reflect particular disease states such as cancer, cardiovascular disorders, and even neuronal dysfunction [18, 29]. Increases of miR-34a in various tissues during aging are well recognized in our own work and that of others, from liver to brain, and even in autopsy brains and PBMCs of AD victims [13, 16]. Our previous report [13] documented increased expression of miR-34a in AD patients’ PBMCs, compared to NEC, associated with allelic inheritance of APOE4 [19, 42]. Although this systemic change in miRNA expression in PBMCs of AD patients is of prime significance, expression profiles in PBMCs may also indicate changes in the immune system in Alzheimer's disease [42]. This notion led to the recent suggestion that aberrant inflammation is an vital underlying AD pathogenesis, challenging the popular emphasis on amyloid plaques as the essential manifestation of the disease [43]. The kernel of this suggestion is the overexpression of cytokine interleukin-1 (IL-1) by microglia in the brain, thought to lead to neuronal deterioration in Alzheimer's disease [44]. Interestingly, upstream regulators for IL-1, i.e. IL-6 and IL-8, are secreted by senescent fibroblasts, associated with miR-146a/b, key microRNAs controlling inflammatory response [45]. Moreover, increased miR-146a is noted in AD brains and the brains of older mice, perhaps due to increased inflammatory response [46]. Linking the secretion from senescent fibroblasts to brain aging and neurodegeneration may suggest that heightened inflammatory response in aged animals and Alzheimer brain is a systemic manifestation involving all tissue types; plasma samples may be the best source to identify the factors involved. Future work using our same approach, i.e. baseline studies of the composition of this blood component, with miR-146a and others secreted by cells such as senescent fibroblasts, may yield more blood-based, age-dependent biomarkers in the category of increased inflammatory response.

	Clearly, the present study is not comprehensive, covering all the miRNAs found in either PMBCs or plasma as biomarkers of brain aging, as noted above for miR-146a. However, our finding of miR-34a increasing monotonically with age, as a first example, demonstrates that circulating blood is a powerful and accessible window to visualize changes in vital organs which are not otherwise available, in the case of human studies during aging. Including our own work with Alzheimer's disease (AD), most human studies are limited by available resources and time required, and thus designed with a cross-sectional approach, comparing disease victims with age-matched controls, as reviewed by Provost, 2010 [47]. Longitudinal follow-up studies are rare and costly, and thus most microRNA studies for AD pathogenesis are limited to autopsy brain samples and animal models. Neither approach is ideal; the former is noted for its graveyard nature, imperfect neither for disease initiation nor progression, and animal models mostly use transgenic mice carrying human APP and/or Tau mutations mostly composed of familial AD polymorphisms as surrogates. The present work shows baseline concordant changes between PBMCs, plasma specimens, and brain, thus validating our human peripheral blood sample study with AD patients, pointing to circulating RNAs as an accessible and noninvasive biological source to detect changes in brain. In particular, changes in plasma microRNA profile may occur much earlier, seen here at 4 months, than the impending decline in brain. Our study presents the first example that circulating blood microRNAs, exemplified by miR-34a, may serve as biomarkers for brain aging. The RNA samples collected for this study will be an invaluable resource, when the entire repertoire of microRNA profiles from birth to old age in mice is obtained by future studies using deep sequencing; data obtained will serve as a baseline database for animal disease model studies in general, and as a possible surrogate for human studies as well, because of the cross-species conserved nature of this noncoding RNA species. The present study paves the way for the ultimate discovery of tissue-specific biomarkers in blood samples for inaccessible organs such as brain, and possibly even blood-based universal biomarkers for entire organismic aging.

	Materials and Methods

	Animals and Tissue Collection

	Mice of the C57/black 6 strain, from 2 days till 31 months old, were used in this study. For immunohistochemistry and in situ hybridization assays, brains of males 10 and 31 months old were used, while the other assays used 2 days old till 25 months (2, 7, 14, 20 and 28 days, 2, 4, 12, 18, and 25 months). All animal work was approved by institutional (University of Louisville) biosafety board protocol #05-001. Brain and blood specimens, including both peripheral blood mononuclear cells (PBMC) and plasma, were obtained from at least three mice of each age group.

	Processing blood for PBMC and plasma fractions

	After collection, individual mouse blood specimens were layered onto Ficoll-Paque Plus solution (GE Healthcare, Piscataway, NJ), containing EDTA to prevent coagulation, and centrifuged for 30 minutes at 1,500 x g to separate the blood samples into four layers, the plasma in the upper layer the next PBMC-containing fraction, as the white layer, then the Ficoll-Paque plus solution with the red blood cells at the bottom. The plasma and PBMC fractions were then collected and stored at −80°C until further processing for RNA and protein isolation.

	Snap-frozen coronal brain sections were homogenized with Trizol reagent (Invitrogen, Carlsbad, CA), followed by the total RNA isolation, in parallel with the isolated PBMC specimens, with the RNease Mini Kit (Qiagen, Valencia, CA). The isolated RNA fractions were then dissolved in RNase-free water and stored at −80°C until use. The quality of the isolates was determined by the Agilent 2100 Bioanalyzer with the Agilent RNA 6,000 Nano kit (Agilent Technologies, Foster City, CA) by the RNA integrity number (RIN); samples with values > 7 are of acceptable integrity.

	The RNA fraction was isolated by adding 0.75 ml of Trizol LS reagent (Invitrogen, Carlsbad, CA) to 0.25 ml plasma, followed by incubation at room temperature for 5 min. To this solution, 0.2 ml of chloroform was added; after vigorous mixing, it was further incubated for 5 minutes at room temperature, before centrifugation at 15,000 x g for 15 min at 4°C, to obtain the RNA aqueous phase. This was collected, and after addition of 0.5 ml isopropanol (Sigma, St. Louis, MO), RNA was precipitated and collected by further centrifugation to a pellet, before washing with 75% alcohol and storage in RNase-free water. Since plasma contains little or no 28S or 18S RNA, the integrity of the isolated RNA was determined by the small RNA peak between 0 and 150 nt (Supplemental Figure 5C). Concentrations of RNA specimens isolated from brain, PBMC and plasma were determined by Nanodrop 2000 (Thermo Scientific, Wilmington, DE).

	Determination of microRNA expression levels

	Primers specific for miR-34a and miR-196a were obtained from Applied Biosystems (Foster City, CA) to perform quantitative RT-PCR (qPCR), according to this vendor's protocol for TaqMan microRNA assays. Isolated total RNA fractions from brain, PBMC and plasma were initially processed for reverse transcription (RT) using two miRNA-specific primers (miR-34a: AB Assay IDs 000426; miR-196a: 241070_mat) to obtain their RT products, used subsequently for qPCR analysis on a 7500 Fast System Real-Time PCR cycler (Applied Biosystems). Small RNA 202 was used as control to calculate the expression levels of two microRNAs, miR-34a and -196a in isolated biological specimens. Numerical indices of these expression levels are expressed by the 1/ΔCT method, and obtain the values for individual microRNA after subtraction of the CT value for snoRNA202 (AB assay ID 001232, Applied Biosystems).

	Isolation of Protein fraction from brain, PBMCs and plasma

	Sister blocks of brain coronal sections used for RNA isolation were used for protein extraction. In brief, brain specimens of ~100 μg were solubilized in 300 μl RIPA buffer before isolating the protein fraction, as described in our earlier report [16]. For the PBMC specimens, the organic phase after RNA isolation, as described above, was dialyzed on Spectra Pro 6 dialysis membranes (Spectrum Laboratories Inc., Rancho Dominguez, CA) in 0.3% SDS buffer at 4°C until the precipitate was completely dissolved, with further incubation in 0.1% SDS solution for an additional 24 hours. Plasma contains a huge amount of serum albumin and immunoglobulin (IgG); these were removed by the Vivapure anti-human albumin serum (HAS)/IgG kit (Sartorius Stedim Biotech GMbH, Göttingen, Germany). BCA protein assays from Pierce Biotechnology Inc (Rockford, IL) were used to determine the concentrations of the isolated protein samples from brain, PBMC and plasma.

	Immunoblotting for protein levels of SIRT1, Bcl2 and p53

	SIRT1 and Bcl2, two main targets of miR-34a, and the activator of this microRNA, acetyl-p53, as well as the total p53 protein pool were selected for determination of their protein abundance in brain, PBMC and plasma. Twenty-five micrograms of isolated protein samples from these three specimens were used for SDS-PAGE; afterwards, the electrophoretically separated bands were transferred from the gels to nitrocellulose membranes (Schleicher & Schuell BioScience, Keene, NH). Identification and quantification of the three proteins of interest were performed by incubating the membranes with antibodies including rabbit anti-SIRT1 (1:500, 75435, Abcam Inc., Cambridge, MA), rabbit anti-Bcl-2 (1:100, 2870, Cell Signaling, Danvers, MA), rabbit anti-acetyl-p53 (1:500, 06-758, Upstate (Millipore), Billerica, MA), rabbit anti-p53 (1:500, SC-6243, Santa Cruz Inc., CA) and rabbit anti-β-actin (1:1000, 8226, Abcam Inc., Cambridge, MA) overnight at 4°C. β-actin was used as a loading control for PBMC and brain specimens, but not for plasma protein samples, since this protein's levels in plasma are not always stable. Instead, we selected a stable band with equal intensities across all lanes by Ponceau S staining [48]. Blots were developed following the method published previously [17], and levels of protein abundance were detected by the Enhanced Chemiluminescence (ECL) method, according to the manufacturer's instructions (Pierce Biotechnology, Rockford, IL). The intensities of bands on the ECL- developed films were quantified by densitometry using ImageQuant software (Molecular Dynamics Inc. Sunnyvale, CA).

	Localization of miR-34a distribution by in situ hybridization in brain

	A microRNA 34a-specific locked nucleic acid (LNA) conjugated with digoxigenin (DIG), and a scrambled control, were purchased from Exiqon (Woburn, MA; miR-34a LNA probe: 38487-05; Scramble-miR LNA probe: 99004-01). These probes were incubated with the snap-frozen coronal brain sections, following our reported protocol [3]. Bound LNA probes were revealed by further incubating the sections with sheep anti-digoxigenin (DIG) antibody conjugated with alkaline phosphatase (AP) (1:2000; Roche, Indianapolis, IN) at 4°C overnight, followed by further detection of the DIG-AP substrate by nitrobluetetrazoliumchloride (NBT)/5-bromo-4-chloro-3-indolyl phosphate, toluidine salt (BCIP). Positive signal of the distribution of the LNA probes was detected by microscopic visualization, followed by image quantification with densitometry software (ImageQuant version 5.2, Molecular Dynamics).

	Selected segments of images in the hippocampal and cortical regions were evaluated for miR-34a labeling intensity, compared to the scrambled control probe. Image quantification was performed using three animals per age group; the intensities of the LNA probes were obtained numerically from three repeats with three serial sections each. Thus, the final intensities for the two probes in each age group were obtained from three different animals, to control for inter-animal difference, and three repeats with three serial sections to control for inter-experiment variation. The scrambled control was used to normalize for background labeling noise.

	Immunohistochemistry localization of SIRT1 distribution in brain

	Sister serial sections to those used above for in situ hybridization were processed to the determine SIRT1 distribution by initially fixing them with 4% paraformaldehyde (PFA), followed by blocking with 10% goat serum (Invitrogen, Carlsbad, CA) and incubation with rabbit anti-SIRT1 at 1:200 dilution (75435, Abcam Inc., Cambridge, MA) at 4°C overnight. The bound antibody was revealed by further incubation with goat anti-rabbit (1:400; Invitrogen) conjugated with Alexa fluor 594 for 40 minutes at 37°C. Antibody labeling was evaluated on a Zeiss fluorescence microscope (Carl Zeiss, Brighton, MI) and AxioVision Rel.4.6 imaging system; image analysis of the distribution and intensities of SIRT1 protein in brain specimens of the two age groups follow the same procedure described above.

	Data Analysis for statistical significance

	The 1/ΔCT values of qPCR results for the expression levels of miR-34a, miR-196, and controls among different age groups were analyzed by Student's t tests, with p values < 0.05 as statistically significant difference between any two groups presented in all the graphs for this assay. ANOVA was used to analyze data from all age groups included in all the assays. Mean ± standard deviation (SD) was calculated for data obtained from quantitative evaluation for immunoblotting, in situ hybridization and immunofluorescence assays. Data analysis for these results proceeded as described for qPCR values. In all experiments, three different animals were used, to control for inter-animal variation; some of them performed three repeats, to control for inter-assay variance.

	Supplementary Materials

	S-Figure 1

	Age-dependent levels of miRNA-34a expression in various tissues in C57/B6 micePanels (A-B-C) present box plot graphs of miR-34a expression in plasma, PBMCs and brain samples, along with graphs of the 1/delta CT trend. (n = 3; three different animals were used from each age group selected for the study.)

	S-Figure 2

	Age-dependent expression levels of miRNA-196a in various tissues of C57/B6 micePanels (A-B-C) present box plot graphs of miR-196a expression in PBMCs, plasma and brain samples, along with graphs of the 1/delta CT trend. (n = 3; three different biological samples from each age group.)

	S-Figure 3

	Graphical presentation of age-dependent expression levels of miR-34a target gene SIRT1 in plasma, PBMCs and brain samples of C57/B6 micePanels (A, B, C) show line graphs representing average intensity of SIRT1 expression, and trend lines depicting expression trends in various age groups, separated into different panels, with neonatal 2 to 28 days (d) in panel (a), and early adult from 2 months (m) to old age of 25 months in panel (b) in PBMCs, plasma and brain samples. (All graphs represent Mean ± SD; n = 3; three different biological samples from each age group.)

	S-Figure 4

	Age-dependent expression levels of miR-34a target gene Bcl-2 in blood and tissue samples of C57/B6 micePanels (A, B, C) show average intensities of Bcl-2 expression, and trend lines depicting expression in various age groups, in plasma, brain and PBMCs samples. All graphs represent Mean ± SD; n = 3; three different biological samples from each age group.

	S-Figure 5

	RNA integrity analysis, using Agilent 2100 BioanalyzerPanels (A) Table shows RNA Integrity Number (RIN) for PBMCs and brain samples across the age groups considered; (B) shows the representative graphical representation of 28s, 18s, and small RNA bands observed during RNA integrity analysis for PBMCs and brain samples; (C) shows the representative graphical representation of small RNA bands as a small peak, and absence of 28s and 18s RNA peaks, as expected, in plasma samples during RNA integrity analysis.

	S-Table-1

	Statistical analysis of miR-34a and miR-196a expression in blood and tissue samples of C57/B6 miceTabular presentation of mean standard deviation calculation for miRs-34a and 196a in PBMCs, plasma and brain samples. (n = 3, three different biological samples from each age group)
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	Abstract

	The past year has seen considerable developments in the use of the DNA double-strand breaks (DSBs) to evaluate genome alterations in cells undergoing a variety of genotoxic stresses in vitro and in vivo. When the γ -H2AX foci which mark the DSBs are stained, individual breaks are detectible, making the assay suitable for situations requiring great sensitivity. While the methods for the detection of γ -H2AX foci are still evolving, particularly for in vivo detection, the basic assay has proven to be useful in several diverse areas of research. We will highlight recent developments of the assay in four areas: radiation biodosimetry, the evaluation or validation of new cancer drugs in clinical studies, chronic inflammation, and environmental genotoxicity.

	Background

	The creation of a double-strand break (DSB) in eukaryotic cells is generally accompanied by the formation of hundreds of histone γ-H2AX (H2AX-S139PO4 in humans) molecules in the chromatin flanking the DSB site [1]. Antibodies to γ-H2AX allow the visualization of a “focus” at the DSB site. The foci also serve as sites for accumulation of other proteins involved in DSB repair, leading to the suggestion that the foci have roles in signal amplification and the accumulation of DNA repair factors that, in turn, facilitate chromatin remodeling, cell cycle checkpoint functioning, sister chromatid-dependent recombin-ational repair and chromatin anchoring to prevent the dissociation of broken ends [reviewed in [1-5]]. However, although γ-H2AX appears to be a principal player in the DNA damage response and necessary for the initial rapid phase of DSB repair, mice lacking H2AX, while hypersensitive to ionizing radiation, are still capable of DNA damage signaling and repair [6]. The viability of the H2AX-null mouse indicates that H2AX is not essential for homologous recombination or non-homologous end joining itself. However, these mice suffer from two major deficits—a lack of class switch recombination during immune system development and a lack of sperm production in males. The former process is known to involve DSBs and genomic rearrangements. In the testes of H2AX-null males, autosome pairing and synapsis appear to take place normally, but the X and Y chromosomes fail to form a condensed sex body [1,6].

	Potential practical uses of γ-H2AX foci formation in cells and tissues have been apparent from soon after its discovery. The amplified response makes it possible to easily visualize individual DSBs in cell nuclei, making γ-H2AX foci staining more sensitive than other methods of DSB detection [7]. The realization that DSBs, whether alone or as one type of a spectrum of DNA lesions, are involved in many processes that disturb cellular homeostasis has led to broadening use of γ-H2AX foci detection beyond basic research. It has been used as a biomarker for aging and cancer, and a biodosimeter for drug development, radiation exposure and for clinical trials for cancer chemo- and radiotherapy. Finally, other emerging uses for γ-H2AX include detection of toxic environmental agents and the detection of chronic inflammation (Figure 1). In this report we highlight recent advances in four areas utilizing γ-H2AX detection.
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	Figure 1. Applications for γ-H2AX detection. Because of its sensitivity, the γ-H2AX assay is now utilized in many research areas “from benchtop to bedside” by researchers and clinicians. In addition to being widely used for fundamental research (study of genome stability, DNA repair, etc.) in the last decade, γ-H2AX was identified as a biomarker for cancer (and premalignant lesions) and used to better understand aging. Additionally, γ-H2AX has been developed for radiation biology and biodosimetry for drug development and clinical studies (chemotherapy, the impact of chronic inflammation and diabetes on genome integrity). Finally, γ-H2AX measurement is an efficient and sensitive genotoxic assay for environmental studies.

	Radiation biodosimetry

	Since ionizing radiation induces DSBs among a broad spectrum of DNA lesions, assessment of the biologic response to radiation exposure is a straightforward application in the use of γ-H2AX as a biodosimeter. Detection of radiation-induced DSBs in vivo using the γ-H2AX assay has been utilized as a tool for dose estimation in the clinic for localized irradiation with both high (radiotherapy) and low doses (X-ray examination, computed tomography (CT) scan, etc) [see [7-9] as examples]. γ-H2AX may be used to improve the conditions for patients undergoing radiation treatments, for example as a tool to estimate individual radiosensitivity, scattering or abscopal effects in normal tissues (discussed below). Kuefner et al. (2010) followed γ-H2AX foci formation during different cardiac CT protocols and showed that it is important to carefully adapt these protocols to avoid unnecessary X-ray-induced DSBs [7,10]. While the γ-H2AX assay gave results which supported the exposures estimated by physical modeling, it takes into account various biological factors not available in physical modeling, giving more confidence to these measurements.

	However, while studies reported the use of γ -H2AX foci induction following exposure to therapeutic doses of ionizing radiation [9,11-15], how the assay would perform at higher doses, particularly in humans, remained unclear. Recently, the opportunity arose to evaluate γ -H2AX biodosimetry in a study using non-human primates subjected to total-body irradiation in the non-lethal to lethal dose ranges [16]. Using realistic scenarios for accidental exposures, the authors showed that γ -H2AX analysis in lymphocytes and plucked hair follicles (eyebrows and whiskers) may be useful for estimation of radiation dose at times at least 4-days post-exposure at doses of 3.5 Gy and above. In addition, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry has developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool) to respond to major radiological accidents. The RABIT is able to perform the γ -H2AX analysis for radiation biodosimetry of up to 30,000 blood samples a day and is intended to fully automate the γ -H2AX assay, from the isolation of human blood lymphocytes to the immunolabeling of γ -H2AX and image acquisition [17,18].

	Drug biodosimeter

	While ionizing radiation and a few cancer drugs create DSBs directly in the DNA, many drugs induce DSB formation indirectly through interference with DNA replication and transcription [1,19,20]. A well characterized example involves the drug camptothecin that traps topoisomerase I (top1) in DNA complexes which in replicating cells often result in DSB formation as replication forks collide with the trapped top1 complexes [1,21].

	While chemotherapeutic agents are given with a particular type of tumor in mind, every cell in the body may be exposed to the agent. Measuring the amount of DNA damage in a patient's tissues soon after drug administration would allow researchers and clinicians to determine the efficacy of a drug to create DNA damage and genomic instability in the cells of a particular patient. Such information could help “personalize” the doses and delivery of a single drug or combinations of drugs to individual patients in terms of DNA damage efficiencies, and further correlate of these results with data on tumor regression and ultimate patient survival. This may result in optimized protocols that improve patient outcomes.

	The practicality of γ-H2AX as a reproducible pharmacodynamic marker of top 1 inhibitor activity has been evaluated with an assay developed and validated in two laboratories [22]. Using three structurally related indenoisoquinoline Top1 inhibitors in human xenograft mouse models, the assay gave significant responses in tumor biopsies and in skin snips at the mouse equivalents of clinically relevant doses. One advantage of this assay is that results on drug activities were obtained four hours after administration, more quickly than waiting for visible tumor responses. On the basis of this assay, two of the three compounds were selected for further clinical evaluation.

	However, the specificity of many cancer drugs for replicating cells creates a problem concerning appropriate tissues to sample for measuring γ-H2AX foci formation. Sampling the tumor may be the most direct means to measure the efficiency of a cancer therapy, but collecting tumor biopsies is often risky and invasive for the patient. However, tumor cells are shed by many tumors into the peripheral blood of the patients. Monitoring γ -H2AX levels in a patient's circulating tumor cells (CTCs) following cancer treatment has been evaluated and may be a promising technique for following the pharmacodynamic effects of anticancer therapies [23].

	The lymphocytes present in peripheral blood have been utilized to detect γ -H2AX formation during cancer treatment, but these terminally differentiated cells may respond poorly to anticancer drugs that interfere with DNA metabolism. However, recent work has shown that plucked hair bulbs, which contain replicating cells and can be obtained non-invasively, may be utilized to monitor DSB formation in vivo after drug administration [24,25]. The indenoquinoline study showed that hair follicles in skin snips, used instead of plucked hair bulbs in athymic nude mice, responded similarly to the tumor, suggesting that plucked hair bulbs may be an appropriate surrogate tissue [22]. However, while both the tumor and hair bulb contain replicating cells, those of the tumor may have genetic alterations that make their responses to a particular agent different than that of normal replicating cells, both in terms of γ-H2AX foci formation and cell survival. This is a question requiring further research—how does the response of a surrogate tissue correlate with the response of the tumor and the patient and can it be predictive of that response.

	Distant DNA damage and chronic inflammation

	The high sensitivity of the γ-H2AX foci assay has enabled researchers to measure low levels of DNA damage. Intercellular communication among cells in a culture or organism, where some of the cells have been damaged, has been found to result in the presence of low levels of DNA damage in cells peripheral to the damaged cells. For example, the radiation-induced bystander effect refers to the situation where a larger fraction of the cell population dies compared to the fraction hit by ionizing particles [26]. The effect can be demonstrated when a few cells in a culture are targeted with alpha particles, when an irradiated culture is mixed with an unirradiated one, and when the media conditioned on an irradiated culture is transferred to an unirradiated culture [27]. This last method indicates that substances released into the media from the irradiated culture are inducing the effects in the recipient normal, bystander culture. Bystander cells have been shown to exhibit greater numbers of chromosomal aberrations, micronuclei and γ-H2AX foci as well as increased mortality [28]. While the incidence of these defects is often just a few-fold elevated over the control values, the increase can be measured with γ-H2AX foci.

	Cells, not exposed to genotoxic agents, but which are aberrant in some way may also induce a bystander effect in normal cells. γ-H2AX levels are elevated in cancer and aging cells in which it marks both DSBs and abnormal telomeres [29]. Media conditioned on cultures of both aging and tumor cells were found to induce elevated levels of γ-H2AX foci in normal cells. These results suggest that cells may constantly be releasing factors into their surroundings which affect other cells, at least in culture [30].

	Recently, a tumor-induced bystander effect has been demonstrated in mice [31]. Syngenetic tumors were implanted subcutaneously in normal mice, and after two weeks, various organs of the mice were analyzed for DNA DSBs and another type of serious DNA lesions, oxidative clustered DNA lesions (OCDLs). Elevated levels of γ-H2AX foci were found in tissues of the gastrointestinal tract and skin including hair follicles; elevated levels of OCDLs were more widely distributed, present in lung and ovary as well as the gastrointestinal tissues and skin. A possible explanation for these results is that DSB formation is more common in proliferating cells where replication forks may encounter single strand breaks with a resulting DSB, while OCDL formation is less dependent on DNA metabolism. Gastrointestinal tract tissues and hair follicles contain higher fractions of proliferating cells compared to other tissues like ovary and lung.

	In contrast to cell culture, this distant bystander effect in mice was found to be dependent on the immune system. Serum taken from tumor-bearing mice exhibited elevated levels of several chemokines involved in macrophage activation, and F4/80+ macrophages were found in the affected distant tissues of tumor-bearing mice compared to their control cohorts. Furthermore, when this experiment was repeated in mice lacking the gene for one of these chemokines, monocyte chemo-tactic protein 1 (MCP-1/CCL2), levels of DNA damage in distant tissues were not elevated. These results strengthen a connection between chronic inflammation and the presence of elevated levels of DNA damage induced by the production/release in tissues of oxidative molecules (i.e. by activated macrophages).

	While these results were obtained in a mouse model system, similar processes appear to be occurring in humans. There is a relationship between chronic inflammation and obesity [32], characterized by increased secretion of proinflammatory cytokines such as interleukin-(IL)-6, IL-8 and MCP-1/CCL2, abundant infiltration of activated macrophages into adipose tissue and obesity-induced insulin resistance [33]. Furthermore, adipose tissue biopsies of obese individuals revealed that both subcutaneous adipose tissue and visceral adipose tissue exhibited γ-H2AX foci but that the visceral tissue exhibited 3-fold more foci [34]. Finally, in one study with obese children, peripheral blood lymphocytes were found to exhibit a greater than 5-fold increase in foci incidence in overweight children and 8-fold in obese children [35]. The normal cohort exhibited 0.0034±0.0006 foci per cell (fpc), overweight 0.019±0.0039 and obese 0.0274±0.0029 fpc. Micro-nuclear frequencies were also elevated in stimulated lymphocytes from the overweight and obese children compared to normal. These values for γ-H2AX foci incidence correspond to one per 294 cells in control individuals versus one per 37 in obese individuals. As with the mouse study, the elevated numbers of foci found were small, equivalent to approximately the number of foci observed 30 minutes after exposure to 2 mGy of ionizing radiation. However, the differences between the obese subjects and normal controls were substantially significant, attesting to the potential value of γ-H2AX foci measurements at low DSB levels.

	In addition, there is a documented correlation between obesity and overall cancer incidence, as well as the incidence of other health issues. If increased levels of foci and DSB damage in lymphocytes and adipose tissue is indicative of increased damage levels elsewhere, these findings provide a possible molecular mechanism by which obesity may lead to increased cancer risk.

	Environmental genotoxicity and high-throughput assays

	DSB detection by γ-H2AX foci has been used in studies of the effects of personal exposure to environmental agents such as air pollution, food toxins and industrial chemicals, all of which have the potential of large scale impacts on human populations as well as populations of other organisms. With the γ-H2AX assay researchers are able to monitor small amounts of genotoxicity in vivo, enabling them to evaluate the effects of environmental conditions on a population. As one practical example, a study with women in rural India exposed to high amounts of smoke from cooking with biomass fuel in poorly ventilated kitchens revealed a 4-fold elevation in the fraction of airway epithelial cells exhibiting γ-H2AX foci and 5-fold in peripheral blood lymphocytes compared to the ones using cleaner fuel liquefied petroleum gas [36]. These authors also found the elevation of other DNA damage markers. Such studies could provide evidence for governmental action to limit human exposure to certain environmental agents.

	With the demonstrated utility of γ-H2AX foci measurements in vivo, new tools for high throughput γ-H2AX screenings are being developed. Audebert et al. reported the development of an in vitro genotoxicity assay system using γ-H2AX measurement to evaluate the effects of food poisons such as benzo(a)pyrene, fluoranthene, and 3-methylcholanthrene [37]. In addition to the automated high throughput RABIT system discussed above [17,18], one high-content screening assay [38] and two enzyme-linked immunosorbent assays (ELISA) that can accurately quantify γ-H2AX level, one for screening genotoxic molecules [39] and one for clinical trials [25] have been developed. These tools will greatly increase the capacity to identify genotoxic compounds, not only to humans, but also in other organisms. Since the H2AX phosphorylation site is highly conserved throughout eukaryotes, the γ-H2AX assay may find greatly expanded utility.

	Finally, however, it should be kept in mind that while a γ-H2AX focus may indicate the presence of a DNA DSB in the vast majority of cases there are situations where one may be present without the other. The presence of γ-H2AX foci in the absence of DNA damage has been demonstrated by tethering single repair factors to chromatin [40]. Also, in normal senescent cell cultures, γ-H2AX may also be an indicator of mTOR-dependent senescent phenotype independent of DNA damage and of a classic DNA damage response [41]. In contrast, the presence of DSBs without γ-H2AX foci formation has been demonstrated in mouse kidney cells when bathed in high salt [42]. Break repair is hindered while the osmolality is high, but when it is returned to normal, γ-H2AX foci form and the breaks are repaired. Understanding these exceptional situations may help clarify the overall relationship between γ-H2AX foci and DSBs.

	Conclusions

	The studies presented here demonstrate the wide range of genotoxic events in vitro and in vivo that are amenable to DNA damage measurements utilizing the γ-H2AX assay. In some cases there is substantial induction of γ-H2AX foci with exposure to high levels of ionizing radiation and cancer drugs, while in others the induction is of smaller magnitude, such as with diagnostic CT scans, environmental toxicity and chronic inflammation. γ-H2AX studies indicate a connection between DNA damage and chronic inflammation, but is the DNA damage observed during chronic inflammation just another indicator of a biological system that is not at optimum homeostasis, or does it have a causal roles on the long-term deleterious effects of chronic inflammation? Also, while the effects of large-scale DNA damage as indicated by strong γ-H2AX signals are readily apparent, it is not yet clear what a several-fold elevation of DNA damage markers including γ-H2AX foci mean to the organism either in the short-term or long-term. In the case of drug biodosimetry, the relationships of γ-H2AX responses of surrogate tissues relative to the γ-H2AX responses of tumors as well as the crucial biological responses of tumors, regression and disappearance, are beginning to be studied. These are all important questions that remain to be answered.

	γ-H2AX studies are beginning to give useful input for decision making. Two examples discussed here are the comparison of various CT scanning protocols [10] and the choice of indenoisoquinolines for clinical evaluation [22]. While such studies to date have concentrated on human subjects, the almost universal conservation of DNA damage induced H2AX phosphorylation throughout eukaryotic evolution including plants suggests that future research may include many more subjects.
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