Abstract

Background

Hypertension is a highly prevalent disease associated with cardiovascular morbidity and mortality. Recent studies suggest that patients with hypertension also have a deficiency of certain cardiac peptides. Previously we demonstrated that a single intravenous injection of the myocardium-tropic adeno-associated virus (AAV) 9-based vector encoding for proBNP prevented the development of hypertensive heart disease (HHD) in spontaneously hypertensive rats (SHRs). The current study was designed to determine the duration of cardiac transduction after a single AAV9 injection and to determine whether cardiac BNP overexpression can delay the progression of previously established HHD, and improve survival in aged SHRs with overt HHD.

Methods and Results

To evaluate the duration of cardiac transduction induced by the AAV9 vector, we used four week old SHRs. Effective long-term selective cardiac transduction was determined by luciferase expression. A single intravenous administration of a luciferase-expressing AAV9 vector resulted in efficient cardiac gene delivery for up to 18-months. In aged SHRs (9-months of age), echocardiographic studies demonstrated progression of HHD in untreated controls, while AAV9-BNP vector treatment arrested the deterioration of cardiac function at six months post-injection (15-months of age). Aged SHRs with established overt HHD were further monitored to investigate survival. A single intravenous injection of the AAV9-vector encoding rat proBNP was associated with significantly prolonged survival in the treated SHRs (613±38 days, up to 669 days) compared to the untreated rats (480±69 days, up to 545 days)(p<0.05).

Conclusions

A single intravenous injection of AAV9 vector elicited prolonged cardiac transduction (up to 18 months post-injection). AAV9 induced cardiac BNP overexpression prevented development of congestive heart failure, and significantly prolonged the survival of aged SHRs with previously established overt HHD. These findings support the beneficial effects of chronic supplementation of BNP in a frequent and highly morbid condition such as HHD.