PCH-2 regulates Caenorhabditis elegans lifespan
Abstract
Components or downstream targets of many signaling pathways such as Insulin/IGF-1 and TOR, as well as genes involved in cellular metabolism and bioenergetics can extend worm lifespan 20% or more. The
C. elegans gene
pch-2 and its homologs, including
TRIP13 in humans, have been studied for their functions in cell mitosis and meiosis, but have never been implicated in lifespan regulation. Here we show that over-expression of TRIP13 in human fibroblasts confers resistance to environmental stressors such as UV radiation and oxidative stress. Furthermore,
pch-2 overexpression in
C. elegans extends worm lifespan, and enhances worm survival in response to various stressors. Conversely, reducing
pch-2 expression with RNAi shortens worm lifespan. Additional genetic epistasis analysis indicates that the molecular mechanism of
pch-2 in worm longevity is tied to functions of the sirtuin family, implying that
pch-2 is another chromatin regulator for worm longevity. These findings suggest a novel function of the
pch-2 gene involved in lifespan determination