Research Paper Volume 12, Issue 19 pp 19585—19596
Glypican-1-targeted and gemcitabine-loaded liposomes enhance tumor-suppressing effect on pancreatic cancer
- 1 Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
- 2 East China Normal University, Shanghai, China
Received: February 12, 2020 Accepted: July 25, 2020 Published: October 9, 2020
https://doi.org/10.18632/aging.103918How to Cite
Copyright: © 2020 Mu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Liposomes (LPs) as promising drug delivery systems are widely applied in cancer therapy. This study aimed to investigate the effect of glypican-1 (GPC1)-targeted and gemcitabine (GEM)-loaded LP [GPC1-LP (GEM)] on cell proliferation and apoptosis in PANC-1s, as well as on orthotopic pancreatic cancer (PDAC) mice. The GPC1-LP (GEM) and LP (GEM) was prepared, and then the size distribution of GPC1-LP (GEM) was analyzed by dynamic light scattering (DLS). In vitro drug release assay of GPC1-LP (GEM) and LP (GEM) was performed, and the expression of GPC1 in PANC1 cells was detected as well. Next, the effects of free GEM, LP (GEM) and GPC1-LP (GEM) on cell viability, clone number, and apoptosis, as well as the expression of proteins associated with apoptosis were measured in 239T and PANC-1 cells. Furthermore, the body weight and tumor size of orthotopic PDAC mice were evaluated following the treatment of free GEM, LP (GEM) or GPC1-LP (GEM). LP (GEM) and GPC1-LP (GEM) were successfully prepared with a successful GEM release within 24 h. In addition, GPC1 was positively expressed in PANC-1 cells but not 293T cells. These findings provided more insights into the anti-tumor potential for the biomedical application of GPC1-LP (GEM) in PDAC.