Research Paper Volume 13, Issue 23 pp 25393—25407
Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease
- 1 Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- 2 Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
- 3 State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
- 4 Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
- 5 Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
Received: October 30, 2021 Accepted: November 11, 2021 Published: December 12, 2021
https://doi.org/10.18632/aging.203755How to Cite
Copyright: © 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown.
Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms.
Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells.
Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.