Research Paper Volume 14, Issue 8 pp 3416—3424
The effect of D-chiro-inositol on renal protection in diabetic mice
- 1 School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
- 2 Clinical Medical College, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
- 3 School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
- 4 Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, PR China
- 5 School of Nursing and Health, Caofeidian College of Technology, Tangshan 063210, Hebei, PR China
Received: January 22, 2022 Accepted: March 28, 2022 Published: April 19, 2022
https://doi.org/10.18632/aging.204019How to Cite
Copyright: © 2022 Fan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
D-Chiro-inositol (DCI) exerts a hypoglycaemic effect, participates in lipid metabolism and reduces kidney damage. In this study, we preliminarily explored the protective effect of DCI on renal injury in diabetic mice. Male db/db mice were used in this study. After treatment with DCI (35 and 70 mg/kg/d) for 6 consecutive weeks, random blood glucose (RBG) measurements were conducted at 0 and 6 weeks. Creatinine (Cr) and serum blood urea nitrogen (BUN) levels were measured using assay kit, and morphological changes in the kidneys were observed by HE staining, Masson staining and electron microscopy. Immunohistochemical and Western blot experiments were used to examine the protein expression of matrix metalloproteinase-9 (MMP-9), nuclear factor-κB (NF-κB) and peroxisome proliferator-activated receptor-γ (PPAR-γ). We discovered that the increased RBG levels were alleviated after treatment with DCI. Moreover, the Cr and BUN levels were reduced, glomerular mesangial hyperplasia was alleviated, and the degree of renal fibrosis was reduced. In addition, DCI improved the protein expression of MMP-9 and PPAR-γ in kidney tissue, which in turn inhibited NF-κB protein expression, as shown by immunohistochemistry and Western blotting. Our findings showed that DCI ameliorated the renal injury induced by diabetes by upregulating MMP-9 and PPAR-γ expression and downregulating NF-κB expression. We preliminarily concluded that the renal protective effect of DCI on diabetic mice may occurs through the MMP-9/NF-κB signalling pathway.