Abstract

Early diagnosis of ovarian cancer and the discovery of prognostic markers can significantly improve survival and reduce mortality. OPA3 protein exists in a structure called mitochondria, which is the energy production center of cells, but its molecular and biological functions in ovarian cancer are still unclear. Here, the expression of OPA3 mRNA in ovarian cancer was estimated using TCGA, Oncomine, TIMER databases. We found that functional OPA3 activation caused by mutations and profound deletions predicted poor prognosis in OV patients. OPA3 was highly expressed in both OV tissues and cells compared to normal ovarian tissues/cells. High OPA3 expression is associated with poorer overall survival (OS). The association between OPA3 and immune infiltration of ovarian cancer was assessed by TIMER and CIBERSORT algorithms. OPA3 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of OV cell lines revealed that OPA3 inactivation was associated with increased sensitivity to PFI-1, and WZ4003. Therefore, we investigated the clinical application of OPA3 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of ovarian cancer.