Abstract

Background: RecQ mediated genome instability 2 (RMI2) is an essential component of the BLM-TopoIIIa-RMI1-RMI2 (BTR) complex. However, the mysterious veil of the potential immunological relationship of RMI2 in tumorigenesis and development has not been revealed.

Methods: We conducted the differential expression (DE) analysis of the RMI2 in pan-cancer using data onto Oncomine, TIMER, and GEPIA databases. Afterward, survival analysis and clinical-stage correlation analysis were performed via the TCGA database. Subsequently, we used R software to further explore the relationship between the expression level of RMI2 and tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), tumor immune-infiltrated cells (TILs), immune checkpoints (ICP), mismatch repairs (MMRs) -related genes, m6A-related genes, DNA methylation-related genes. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional networks were also performed for annotation via gene set enrichment analysis (GSEA).

Results: The RMI2 expressed remarkably high in most cancer types compared to cancer adjacent normal tissues (P < 0.05). High expression of RMI2 was linked to unfavorable prognosis and advanced stage of disease, especially in LIHC and PAAD. RMI2 expression was related to TMB in 16 cancer types and MSI in 8 cancer types. Furthermore, it is significant positive correlations between RMI2 and stromal and immune cells, ICP-related genes, MMRs-related genes, m6A-related genes, and DNA methylation-related genes. Finally, GSEA analysis revealed that RMI2 was engaged in a variety of signaling pathways in pan-cancers.

Conclusions: RMI2 may serve as a potential biological target and probably assume a crucial part in tumorigenesis and progression.