Research Paper Volume 9, Issue 6 pp 1623—1639
Sodium fluoride causes oxidative stress and apoptosis in the mouse liver
- 1 College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- 2 Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
Received: June 16, 2017 Accepted: June 20, 2017 Published: June 27, 2017
https://doi.org/10.18632/aging.101257How to Cite
Copyright: Lu et al. This is an openâaccess article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The current study was conducted to investigate the effect of sodium fluoride (NaF) on the oxidative stress and apoptosis as well as their relationship in the mouse liver by using methods of flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, biochemistry and experimental pathology. 240 four-week-old ICR mice were randomly divided into 4 groups and exposed to different concentration of NaF (0 mg/kg, 12 mg/kg, 24 mg/kg and 48 mg/kg) for a period of 42 days. The results showed that NaF caused oxidative stress and apoptosis. NaF-caused oxidative stress was accompanied by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreasing mRNA expression levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione-s-transferase (GST). NaF induced apoptosis via tumor necrosis factor recpter-1 (TNF-R1) signaling pathway, which was characterized by significantly increasing mRNA and protein expression levels of TNF-R1, Fas associated death domain (FADD), TNFR-associated death domain (TRADD), cysteine aspartate specific protease-8 (caspase-8) and cysteine aspartate specific protease-3 (caspase-3) in dose- and time-dependent manner. Oxidative stress is involved in the process of apoptotic occurrence, and can be triggered by promoting ROS production and reducing antioxidant function. NaF-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and increased serum alanine amino transferase (ALT), aspartic acid transferase (AST), alkaline phosphatase (AKP) activities and TBIL contents.