Research Paper Volume 11, Issue 16 pp 6358—6370
Platelet activation in diabetic mice models: the role of vascular endothelial cell-derived protein disulfide isomerase-mediated GP IIb/IIIa receptor activation
- 1 The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- 2 Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong 266071, China
- 3 Department of Geriatric Medicine, Qilu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
Received: June 11, 2019 Accepted: August 10, 2019 Published: August 22, 2019
https://doi.org/10.18632/aging.102192How to Cite
Copyright © 2019 Qin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 3.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
GP IIb/IIIa receptor activation plays an important role in thrombosis. The mechanism of early activation of GP IIb/IIIa receptors in diabetic conditions remains unknown. The purpose of this study was to investigate the release of Endothelial microparticle (EMP)-associated protein disulfide isomerase (PDI) after endothelial cell injury induced in diabetes and the changes in platelet activation. We produced an animal model of type 2 diabetes mellitus using ApoE−/− mice. Normal ApoE−/− and diabetic mice were allocated to four groups (n = 15): normal diet, normal diet plus rutin, diabetic, and diabetes plus rutin. The EMP-PDI content and GP IIb/IIIa expression of mice platelets were determined. In addition, EMPs obtained from the four groups were pretreated with the PDI inhibitor rutin; then, their effects on the platelets of normal C57 mice were characterized. Compared with the normal diet group, the diabetic group had significantly increased plasma EMP-PDI content and accelerated platelet activation by increased GP IIb/IIIa expression. In conclusion, EMP-PDI promotes early platelet activation through glycoprotein (GP) IIb/IIIa receptors present on platelet surface in the diabetic state. However, this process could be partially suppressed by the administration of rutin.