Research Paper Volume 12, Issue 5 pp 4463—4473
Role of eotaxin-1/CCL11 in sepsis-induced myocardial injury in elderly patients
- 1 Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
- 2 Department of Urology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
- 3 Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
Received: November 7, 2019 Accepted: February 25, 2020 Published: March 9, 2020
https://doi.org/10.18632/aging.102896How to Cite
Copyright © 2020 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Myocardial injury is a serious complication of sepsis. The present study aimed to identify potential biomarkers of sepsis-induced myocardial injury. Differentially expressed genes (DEGs) in patients and mice with sepsis-induced myocardial injury were identified via bioinformatic analysis. The identified DEG was tested in elderly patients with sepsis-induced myocardial injury. We identified 19 co-expressed DEGs. The most significant DEG was eotaxin-1/CCL11. We enrolled 25 controls without infections and 28 patients with sepsis-induced myocardial injury. Six of patients died within 30 days. Circulating eotaxin-1/CCL11 levels were significantly higher in patients with sepsis-induced myocardial injury than controls and were higher in non-survivors than survivors (both P < 0.01). Eotaxin-1/CCL11 was positively correlated with troponin I (r=0.48, P=0.01), B-type natriuretic peptide (BNP, r=0.44, P=0.02), and white blood cell (WBC) count (r=0.41, P=0.03). For the prediction of 30-day mortality, eotaxin-1/CCL11 had the greatest discriminatory ability (AUC 0.97) compared with troponin I (AUC 0.89), BNP (AUC 0.80), and WBC count (AUC 0.86). Taken together, eotaxin-1/CCL11 was upregulated in sepsis-injured myocardium and circulating eotaxin-1/CCL11 was a biomarker for predicting severity and mortality of elderly patients with sepsis-induced myocardial injury. These results suggest that eotaxin-1/CCL11 may become a useful biomarkers and potential therapeutic target for sepsis-induced myocardial injury.