Research Paper Volume 12, Issue 13 pp 12598—12608
Increased expression of connexin 43 in a mouse model of spinal motoneuronal loss
- 1 Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
- 2 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, Catania 95123, Italy
- 3 Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania 95123, Italy
- 4 Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
- 5 Rehabilitation Unit, “AOU Policlinico Vittorio Emanuele”, University of Catania, Catania 95123, Italy
Received: April 1, 2020 Accepted: June 5, 2020 Published: June 24, 2020
https://doi.org/10.18632/aging.103561How to Cite
Copyright © 2020 Spitale et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common motoneuronal disease, characterized by motoneuronal loss and progressive paralysis. Despite research efforts, ALS remains a fatal disease, with a survival of 2-5 years after disease onset. Numerous gene mutations have been correlated with both sporadic (sALS) and familiar forms of the disease, but the pathophysiological mechanisms of ALS onset and progression are still largely uncertain. However, a common profile is emerging in ALS pathological features, including misfolded protein accumulation and a cross-talk between neuroinflammatory and degenerative processes. In particular, astrocytes and microglial cells have been proposed as detrimental influencers of perineuronal microenvironment, and this role may be exerted via gap junctions (GJs)- and hemichannels (HCs)-mediated communications. Herein we investigated the role of the main astroglial GJs-forming connexin, Cx43, in human ALS and the effects of focal spinal cord motoneuronal depletion onto the resident glial cells and Cx43 levels. Our data support the hypothesis that motoneuronal depletion may affect glial activity, which in turn results in reactive Cx43 expression, further promoting neuronal suffering and degeneration.