Research Paper Volume 14, Issue 2 pp 907—922
A radiomics model predicts the response of patients with advanced gastric cancer to PD-1 inhibitor treatment
- 1 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- 2 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- 3 Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Received: September 24, 2021 Accepted: January 11, 2022 Published: January 24, 2022
https://doi.org/10.18632/aging.203850How to Cite
Copyright: © 2022 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Programmed cell death 1 (PD1) inhibitors have shown promising treatment effects in advanced gastric cancer, the beneficiary population not definite. This study aimed to construct an individualized radiomics model to predict the treatment benefits of PD-1 inhibitors in gastric cancer. Patients with advanced gastric cancer treated with PD-1 inhibitors were randomly divided into a training set (n = 58) and a validation set (n = 29). CT imaging data were extracted from medical records, and an individual radiomics nomogram was generated based on the imaging features and clinicopathological risk factors. Discrimination performance was evaluated by Harrell’s c-index and receiver operator characteristic (ROC) curve analyses. The areas under the ROC curves (AUCs) were analyzed to predict anti-PD-1 efficacy and survival. We found that the radiomics nomogram could predict the response of gastric cancer to anti-PD-1 treatment. The AUC was 0.865 with a 95% CI of 0.812-0.828 in the training set, while the AUC was 0.778 with a 95% CI of 0.732–0.776 in the validation set. The diagnostic performance of the radiomics was significantly higher than that of the clinical factors (p < 0.01). Patients with a low risk of disease progression discriminated by the radiomics nomogram had longer progression-free survival than those with a high risk (6.5 vs. 3.2 months, HR 1.99, 95% CI: 1.19-3.31, p = 0.009). The radiomics nomogram based on CT imaging features and clinical risk factors could predict the treatment benefits of PD-1 inhibitors in advanced gastric cancer, enabling it to guide decision-making regarding clinical treatment.