Abstract

This study aims to clarify the mechanistic actions of microRNA-873-5p (miR-873-5p) on glioblastoma (GBM) progression. The most differentially expressed miRNAs were retrieved from the GEO database. It was established that miR-873-5p was downregulated in GBM tissues and cells. Based on in silico prediction and experimental data, HMOX1 was demonstrated to be a target gene of miR-873-5p. Further, miR-873-5p was then ectopically expressed in GBM cells to examine its effect on the malignant behaviors of GBM cells. Overexpression of miR-873-5p inhibited GBM cell proliferation and invasion by targeting HMOX1. HMOX1 promoted SPOP expression by increasing HIF1α expression, thus stimulating GBM cell malignant phenotypes. miR-873-5p suppressed the malignant phenotypes of GBM cells and tumorigenesis in vitro and in vivo by inhibiting the HMOX1/HIF1α/SPOP signaling axis. This study uncovers a novel miR-873-5p/HMOX1/HIF1α/SPOP axis in GBM, providing new insights into GBM progression and therapeutic targets for GBM treatment.