Research Paper Volume 11, Issue 23 pp 11170—11185
Identification of differentially expressed genes in non-small cell lung cancer
- 1 National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Shaanxi 710032, China
Received: August 31, 2019 Accepted: November 18, 2019 Published: December 9, 2019
https://doi.org/10.18632/aging.102521How to Cite
Copyright © 2019 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Lung cancer is the most common malignant tumor and the leading cause of cancer-related deaths worldwide. Because current treatments for advanced non-small cell lung cancer (NSCLC), the most prevalent lung cancer histological subtype, show limited efficacy, screening for tumor-associated biomarkers using bioinformatics reflects the hope to improve early diagnosis and prognosis assessment. In our study, a Gene Expression Omnibus dataset was analyzed to identify genes with prognostic significance in NSCLC. Upon comparison with matched normal tissues, 118 differentially expressed genes (DEGs) were identified in NSCLC, and their functions were explored through bioinformatics analyses. The most significantly upregulated DEGs were TOP2A, SLC2A1, TPX2, and ASPM, all of which were significantly associated with poor overall survival (OS). Further analysis revealed that TOP2A had prognostic significance in early-stage lung cancer patients, and its expression correlated with levels of immune cell infiltration, especially dendritic cells (DCs). Our study provides a dataset of potentially prognostic NSCLC biomarkers, and highlights TOP2A as a valuable survival biomarker to improve prediction of prognosis in NSCLC.