Research Paper Volume 13, Issue 6 pp 7781—7799
Twist1 signaling in age-dependent decline in angiogenesis and lung regeneration
- 1 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- 2 Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- 3 Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
Received: October 26, 2020 Accepted: March 14, 2021 Published: March 25, 2021
https://doi.org/10.18632/aging.202875How to Cite
Copyright: © 2021 Hendee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Angiogenesis – the formation of new blood capillaries- is impaired in aging animals and contributes to the pathogenesis of age-related diseases. A transcription factor, Twist1, contributes to the pathogenesis of age- and angiogenesis-related diseases such as pulmonary fibrosis and atherosclerosis. However, the mechanism by which Twist1 controls age-dependent decline in angiogenesis remains unclear. In this report, we have demonstrated that the levels of Twist1 are higher, while the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) that stimulates angiogenesis, is lower in endothelial cells (ECs) isolated from aged human adipose tissues and mouse lungs compared to those from young tissues. Knockdown of Twist1 in aged human ECs increases the levels of PGC1α and angiogenic factor receptor, vascular endothelial growth factor receptor (VEGFR2), and restores EC proliferation and migration, while inhibition of PGC1α suppresses these effects. Knockdown of Twist1 in supplemented aged ECs also restores vascular networks in the subcutaneously implanted gel, while these effects are abrogated by knockdown of PGC1α. Age-dependent inhibition of post-pneumonectomy (PNX) lung growth is suppressed in Tie2-specific Twist1 conditional knockout mouse lungs, in which VEGFR2 expression increases after PNX. These results suggest that upregulation of endothelial Twist1 mediates age-dependent decline in angiogenesis and regenerative lung growth.