Research Paper Volume 13, Issue 22 pp 24542—24559

Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening

Erika N. Guerrero1,3, *, , Shantal Vega1,2, *, , Cindy Fu1,3, , Ruth De León1, , Davis Beltran4, , Mairim Alexandra Solis1,2,5, ,

  • 1 Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
  • 2 Universidad de Panamá, Panama City, Republic of Panama
  • 3 Universidad Latina de Panamá, Panama City, Republic of Panama
  • 4 Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
  • 5 Sistema Nacional de Investigación, SENACYT, Panama City, Republic of Panama
* Equal contribution

Received: June 14, 2021       Accepted: November 22, 2021       Published: November 29, 2021
How to Cite

Copyright: © 2021 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Mesenchymal stem cells (MSCs) experience functional decline with systemic aging, resulting in reduced proliferation, increased senescence, and lower differentiation potential. The placenta represents a valuable source of MSCs, but the possible effect of donor age on the properties of placenta-derived mesenchymal stem cells (PDMSCs) has not been thoroughly studied. Thus, the aim of this study was to underscore the effect of maternal age on the biological characteristics and stemness properties of PDMSCs. PDMSCs were isolated from 5 donor age groups (A: 18-21, B: 22-25, C: 26-30, D:31-35 and E: ≥36 years) for comparison of morphological, proliferative and differentiation properties. The pluripotency markers NANOG, OCT4, and SSEA4, as well as multipotency and differentiation markers, showed higher expression in PDMSCs from mothers aged 22-35 years, with up to a 7-fold increase in adipogenesis. Cumulative population doubling, cell growth curves, and colony-forming unit-fibroblast assays revealed higher self-renewal ability in donors 26-30 years old. An increase in the proliferative characteristics of PDMSCs correlated with increased telomere shortening, suggesting that shorter telomere lengths could be related to cellular division rather than aging. A clear understanding of the effect of maternal age on MSC regenerative potential will assist in increasing the effectiveness of future cell therapies.


PDMSCs: placenta-derived mesenchymal stem cells; CPD: cumulative population doubling; CGC: cell growth curve; CFU-F: colony-forming unit-fibroblast assays; FSC: fetal stem cells; ES: embryonic stem cells; MSCs: mesenchymal stem cells; OCT4: octamer-binding transcription factor 4; SSEA4: Stage-specific embryonic antigen-4.