Abstract

Ulcerative colitis is a chronic, non-specific inflammatory disease that affects mainly the colonic mucosa and submucosa. The pathogenesis of ulcerative colitis is unclear, which limits the development of effective treatments. In this study, single-cell sequencing data from 18 ulcerative colitis samples and 12 healthy controls were downloaded from the Single Cell Portal database, cell types were defined through cluster analysis, and genes in each cluster that were differentially expressed in ulcerative colitis were identified. These genes were enriched in functional pathways related to apoptosis, immunity and inflammation. Analysis using iTALK software suggested extensive communication among immune cells. Single-cell sequencing data from adipose-derived mesenchymal stem cells from three healthy female donors were obtained from the Sequence Read Archive database. The SingleR package was used to identify different cell types, for each of which a stemness score was calculated. Pseudotime analysis was performed to infer the trajectory of cells. SCENIC software was used to identify the gene regulatory network in adipose-derived mesenchymal stem cells, and iTALK software was performed to explore the relationship among macrophages, adipose-derived mesenchymal stem cells and enterocytes. Molecular docking confirmed the possibility of cell-cell interactions via binding between surface receptors and their ligands. The bulk data were downloaded and analyzed to validate the expression of genes. Our bioinformatics analyses suggest that ulcerative colitis involves communication between macrophages and enterocytes via ligand-receptor pairs. Our results further suggest that adipose-derived mesenchymal stem cells may alleviate ulcerative colitis by communicating with macrophages to block inflammation.