Abstract

Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing–related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown–induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.