Research Paper Volume 13, Issue 10 pp 14322—14341
Aging-related markers in rat urine revealed by dynamic metabolic profiling using machine learning
- 1 National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
- 2 Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
- 3 Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, PR China
Received: August 24, 2020 Accepted: April 29, 2021 Published: May 19, 2021
https://doi.org/10.18632/aging.203046How to Cite
Copyright: © 2021 Shi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The process of aging and metabolism is intimately intertwined; thus, developing biomarkers related to metabolism is critical for delaying aging. However, few studies have identified reliable markers that reflect aging trajectories based on machine learning. We generated metabolomic profiles from rat urine using ultra-performance liquid chromatography/mass spectrometry. This was dynamically collected at four stages of the rat’s age (20, 50, 75, and 100 weeks) for both the training and test groups. Partial least squares-discriminant analysis score plots revealed a perfect separation trajectory in one direction with increasing age in the training and test groups. We further screened 25 aging-related biomarkers through the combination of four algorithms (VIP, time-series, LASSO, and SVM-RFE) in the training group. They were validated in the test group with an area under the curve of 1. Finally, six metabolites, known or novel aging-related markers, were identified, including epinephrine, glutarylcarnitine, L-kynurenine, taurine, 3-hydroxydodecanedioic acid, and N-acetylcitrulline. We also found that, except for N-acetylcitrulline (p < 0.05), the identified aging-related metabolites did not differ between tumor-free and tumor-bearing rats at 100 weeks (p > 0.05). Our findings reveal the metabolic trajectories of aging and provide novel biomarkers as potential therapeutic antiaging targets.