Research Paper Volume 13, Issue 13 pp 17190—17201
miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis
- 1 Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
- 2 Hanzhong Vocational and Technical College, Hanzhong 723002, Shaanxi, China
Received: December 23, 2020 Accepted: May 13, 2021 Published: July 6, 2021
https://doi.org/10.18632/aging.203169How to Cite
Copyright: © 2021 Wei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Emerging evidence proves that exosomes contain specific microRNAs(miRNAs) contribute to osteogenic differentiation of bone marrow stem cells (BMSCs). However, the role and mechanism of bone marrow stem cells (BMSCs)-derived exosomes overexpressing miR-424-5p in osteoblasts remains unclear. Firstly, the BMSCs-derived exosomes were isolated, and identified by Western blot with the exosome surface markers CD9, CD81 and CD63. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the level of miR-424-5p in exosomes, and western blot was implemented to verify the WIF1/Wnt/β-catenin expression. The binding association between miR-424-5p and WIF1 was determined by the dual-luciferase reporter gene assay. Functional enhancement experiments were adopted to determine the role of exosome-carried miR-424-5p and WIF1/Wnt/β-catenin in osteogenic differentiation. ALP staining was adopted, and levels of RUNX2, OCN, and OPN were monitored using qRT-PCR to determine osteogenic differentiation. As a result, In vivo experiments showed that RUNX2, OCN and OPN levels decreased and the ALP activity was dampened after miR-424-5p overexpression in exosomes. Besides, exosomes overexpressing miR-424-5p attenuated osteogenic development via WIF1/Wnt/β-catenin. Our findings may bring evidence for miR-424-5p as a new biomarker for the treatment of osteoporosis.