Research Paper Volume 14, Issue 4 pp 1865—1878
miR-223-3p inhibits the progression of atherosclerosis via down-regulating the activation of MEK1/ERK1/2 in macrophages
- 1 Hebei Medical University First Affiliated Hospital, Shijiazhuang 050023, Hebei, China
- 2 Hebei Medical University Second Affiliated Hospital, Shijiazhuang 050023, Hebei, China
- 3 Department of Pathophysiology, Oita University School of Medicine, Hasama, Yufu, Ōita-shi, Japan
Received: February 8, 2021 Accepted: January 11, 2022 Published: February 24, 2022
https://doi.org/10.18632/aging.203908How to Cite
Copyright: © 2022 You et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: microRNAs (miRNAs) have drawn more attention to the progression of atherosclerosis (AS), due to their noticeable inflammation function in cardiovascular disease. Macrophages play a crucial role in disrupting atherosclerotic plaque, thereby we explored the involvement of miR-223-3p in the inflammatory response in macrophages.
Methods: RT-qPCR was used to analyze the miR-223-3p levels in carotid arteries and serum of AS patients. ROC curve was used to assess the diagnostic value of miR-223-3p. Movat staining was applied to evaluate the morphological differences. FISH was used to identify the expression of miR-223-3p in macrophages of atherosclerotic lesions. Bioinformatic analysis was performed. Double-immunofluorescence and western blot were performed to assess the inflammatory cytokine secretion and p-ERK1/2. C16-PAF was injected into the culture medium of the miR-223-3p mimic/NC-transfected macrophages with ox-LDL.
Results: MiR-223-3p was up-regulated in AS patients and was associated with a higher overall survival rate. MiR-223-3p was co-localized with CD68+ macrophages in vulnerable atherosclerotic lesions. MiR-223-3p mimics decreased atherosclerotic lesions, macrophages numbers whereas increased SMCs numbers in the lesions. The TNF-a immune-positive areas were reduced by miR-223-3p mimics. MAP2K1 was negatively associated with miR-223-3p. MiR-223-3p mimics reduced the inflammation and the MEK1/ERK1/2 signaling pathway in vivo and in vitro. C16-PAF reversed the effects of miR-223-3p mimics on inflammation and ERK1/2 signaling pathway.
Conclusions: MiR-223-3p negatively regulates inflammatory responses by the MEK1/ERK1/2 signaling pathway. Our study provides new insight into how miR-223-3p protects against atherosclerosis, representing a broader therapeutic prospect for treating atherosclerosis by miR-223-3p.