Research Paper Volume 13, Issue 3 pp 3779—3797
Long noncoding RNA TPT1-AS1 promotes the progression and metastasis of colorectal cancer by upregulating the TPT1-mediated FAK and JAK-STAT3 signalling pathways
- 1 Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
Received: May 12, 2020 Accepted: October 2, 2020 Published: January 10, 2021
https://doi.org/10.18632/aging.202339How to Cite
Copyright: © 2021 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Tumour protein translationally controlled 1 (TPT1) antisense RNA 1 (TPT1-AS1) is known to be involved in the development and metastasis of cervical and ovarian cancers; however, its biological role in colorectal cancer (CRC) remains unknown. This study aimed to determine the function and mechanism of action of TPT1-AS1 in the progression and metastasis of CRC. Elevated TPT1-AS1 levels were observed in CRC tissues. Furthermore, the high expression levels were found to be correlated with unfavourable clinicopathological characteristics in CRC. Cell function experiments demonstrated that TPT1-AS1 depletion impeded cell proliferation, migration and invasion and enhanced cell adhesion; it also attenuated tumorigenesis and metastasis in vivo. Additionally, TPT1-AS1 was predominately located in the nuclei of the cells and could upregulate the expression of TPT1 by recruiting mixed lineage leukaemia protein-1 (MLL1), which increased the trimethylation of H3K4 me3 in the TPT1 promoter region and subsequently activated FAK and JAK-STAT3 signalling cascades. The inhibition of FAK activation by PF573228 significantly attenuated the oncogenic effect of TPT1-AS1. These findings indicated that TPT1-AS1 promoted tumour progression and metastasis in CRC by upregulating TPT1 levels and activating the FAK and JAK-STAT3 signalling pathways. Thus, TPT1-AS1 may be considered as a potential therapeutic target for CRC.